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An interesting aspect of multipartite entanglement is thatfor perfect teleportation and superdense coding, not
the maximally entangled W states but a special class of non-maximally entangled W-like states are required.
Therefore, efficient preparation of such W-like states is ofgreat importance in quantum communications, which
has not been studied as much as the preparation of W states. Inthis letter, we propose a simple optical scheme
for efficient preparation of large-scale polarization based entangled W-like states by fusing two W-like states or
expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing
or expanding W or even W-like states. The cost analysis show that in generating large scale W states, the fusion
mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled
W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization
dependent beam splitter, two polarizing beam splitters andphoton detectors. Requiring no ancilla photons or
controlled gates to operate, our scheme can be realized withthe current photonics technology and we believe it
enables advances in quantum teleportation and superdense coding in multipartite settings.

PACS numbers: 03.67.Ac, 03.67.Hk, 03.65.Ud, 03.67.Bg

I. INTRODUCTION

Quantum teleportation and superdense coding are two intriguing tasks in quantum information processing. In quantum tele-
portation, one can “teleport ”an intact unknown state from one place to another by using a pre-shared bipartite entangled state,
the so-called EPR pair and sending two bits of classical information [1]. A pre-shared EPR pair also enables superdense coding,
which can double the classical capacity of a communication channel [2]. However, due to inevitable environmental effects, a
maximal EPR pair cannot be always available and it was shown that non-maximal EPR pairs cannot enable perfect quantum
teleportation [3, 4] and perfect superdense coding [5–7]. As the number of entangled particles increases, interestingstates arise,
which cannot be transformed into each other by stochastic local operations and classical communications (SLOCC) in general [8]
with the exceptions of three-partite states in the asymptotic regime [9, 10]. Multipartite entangled states can be usedas resource
for various quantum information and communication tasks and there are tasks that can be achieved with only a specific state
[11]. W states [12] form an important class of multipartite entanglement, with a robust structure against particle losses [13].
Therefore, in contrast to GHZ states [14], W states can stillbe used as a resource even after the loss of particles. Recently, the
preparation schemes and applications of maximally entangled W states have attracted considerable attentions [15–25].

Besides bipartite entangled states, multipartite entangled states can be used for quantum teleportation and superdense coding
too. What is more, being much more complicated than bipartite entanglement, multipartite entanglement introduces more diver-
sity to the teleportation and superdense coding schemes. Maximally entangled W states has been used in quantum teleportation
protocols [26, 27], but one needs to perform non-local operation to recover the unknown state [26]. That is to say, this limita-
tion restrains the possibility to recover the unknown stateusing maximally entangled W states -so calledprototype W states-,
resulting only imperfect teleportation schemes [27]. Similar limitations arise on superdense coding with maximally entangled
W states [28]. Because of these imperfections with W states,an intense effort have been devoted to finding a special classof W
states which can enable perfect teleportation and superdense coding. Gorbachevet al. proposed a detailed scheme teleporting
entangled states via the W-class state quantum channel [29]. Agrawalet al. showed that there exists a special class of three-qubit
W states that can be used for perfect teleportation and superdense coding [28], and then Liet al. generalized these schemes to
the cases with W-class states in higher-dimension systems [30]. This special class of W-like states (denoted by|W〉N in this
letter) can be used for perfect teleportation and superdense coding, so it is of great importance to generate|W〉N states.

In this letter, we propose a scheme to prepare|W〉N states via polarization dependent beam splitter (PDBS) based fusion
and expansion mechanism for polarization encoded photons.As a byproduct, a large-scale maximally entangled W state can
be generated by fusing or expanding the|W〉N states too, and the results show that this scheme is more efficient than the one
starting from maximally entangled W states [31]. This letter, is organized as follows: In Section II, we introduce the PDBS
and the fusion or expansion strategies for|W〉N states. The strategies for expending or fusing|W〉N states into large-scale
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maximally entangled states are presented in Section III. InSection IV, we discuss the resource cost of the fusion strategy for
|W〉N states and the results are summarized in Section V.

II. PDBS-BASED FUSION AND EXPANSION STRATEGIES FOR |W〉N STATES

In this section, we show how to generate a large-scale|W〉N state by fusing or expanding small-size|W〉N states via PDBS.
PDBS has polarization-dependent transmissivities:0 < µ < 1 for H polarization photons and0 < ν < 1 for V polariza-
tion photons. The function of the PDBS (as shown in red dashedrectangle in Fig.1) can be described by the following basic
transformations [32],

|H〉a|H〉b → (2µ− 1)|H〉d|H〉c +
√
2µ

√
1− µ|0〉c|HH〉d −

√
2µ

√
1− µ|HH〉c|0〉d, (1a)

|H〉a|V 〉b → √
µ
√
ν|H〉c|V 〉d −

√
1− µ

√
1− ν|V 〉c|H〉d

+
√
1− µ

√
ν|0〉c|HV 〉d −

√
µ
√
1− ν|HV 〉c|0〉d, (1b)

|V 〉a|H〉b → √
µ
√
ν|V 〉c|H〉d −

√
1− µ

√
1− ν|H〉c|V 〉d

+
√
1− µ

√
ν|0〉c|V H〉d −

√
µ
√
1− ν|V H〉c|0〉d, (1c)

|V 〉a|V 〉b → (2ν − 1)|V 〉d|V 〉c +
√
2ν

√
1− ν|0〉c|V V 〉d −

√
2ν

√
1− ν|V V 〉c|0〉d. (1d)
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FIG. 1: The fusion and detection mechanism. The red-dashed rectangle presents the fusion mechanism, i.e. a PDBS. Two photons, one from
|W〉A and the other from|W〉B are sent to the PDBS through input modesa andb, respectively. The corresponding output modes are labeled
asc andd. The blue-dashed rectangles present the detection mechanisms. The output photon from the modec(d) is sent to the polarizing beam
splitter (PBS), which reflects vertically (V) polarized photons and transmits horizontally (H) polarized photons, andthe output modes of the
PBSs are measured by detectorsD1, D2, D3 andD4.

A. Creation of large-scale |W〉 state by fusing small-size |W〉 states

The special class of non-maximally entangled W states, which can be used for perfect teleportation and superdense coding is
found as [30]:

|W〉N =
1√
2
[|HH . . .HV 〉1...N +

1√
N − 1

(|HH . . . V H〉1...N + . . .+ |V H . . .HH〉1...N ], (N ≥ 2). (2)

To explain this class of W-like state, we first give the explicit expressions of prototype W states [16], i.e.|Wn〉 =
1√
n
[|(n− 1)H〉|1V 〉1 +

√
n− 1|Wn−1〉|1H〉1]. A tripartite W state is written as|W3〉 = 1√

3
(|HHV 〉+ |HVH〉+ |V HH〉) =

1√
3
(|2H〉|1V 〉1 +

√
2|W2〉|1H〉1) with W2 being the W-type Bell pair, i.e.|W2〉 = 1√

2
(|HV 〉+ |V H〉) and obviously, bipartite

|W〉 state reduces to the|W2〉 state.
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Firstly, let’s introduce the strategy for fusing a|W〉2 and a|W〉3 into a four-qubit|W〉4 state. Two initial W-class states can
be written as

|W〉2 =
1√
2
[|H〉|V 〉a + |V 〉|H〉a], (3a)

|W〉3 =
1√
2
[|HH〉|V 〉b +

1√
2
(|HV 〉|H〉b + |V H〉|H〉b)]. (3b)

In the fusion strategy, we only have access to one photon of each W-class states, i.e. photonsa, b. Photona is from |W〉2 andb
from |W〉3, and they will be sent into the PDBS for completing the fusionprocess (as shown in Fig.1). The remaining photons
are kept intact at their sites. We are only interested in the case where a photon is present in each of the modesc andd. So the
state after the PDBS can be written as

1

2
[(2ν − 1)|HHH〉|V 〉c|V 〉d − 1√

2

√
1− µ

√
1− ν|HHV 〉|H〉c|V 〉d +

1√
2

√
µ
√
ν|HHV 〉|V 〉c|H〉d

− 1√
2

√
1− µ

√
1− ν|HVH〉|H〉c|V 〉d +

1√
2

√
µ
√
ν|HVH〉|V 〉c|H〉d

−
√
1− µ

√
1− ν|V HH〉|V 〉c|H〉d +

√
µ
√
ν|V HH〉|H〉c|V 〉d]. (4)

As shown in FIG. 1 (blue dashed rectangles), the detection mechanisms are placed after the output modesc andd. It seems that
the two photons are all detected during the fusion mechanism. Actually, only one photon detection is needed for the completion
of the fusion process, and the other photon detection is onlydone for the verification of the event where a photon is present
in each of the two output modes of the PDBS. As discussed in Ref. [33], the second photon detection can be replaced by a
connection to a further optical circuit to complete furtherapplications of the output|W〉N state. That is to say, the verification
process of the event where a photon is present in each of the two output modes of the PDBS and the applications of the output
state are realized simultaneously. If a V-polarized photonis detected inD2, a four-qubit W-like state will be generated as

1

2
C1[|HHH〉|V 〉c + C2|HHV 〉|H〉c + C3|HVH〉|H〉c + C4|V HH〉|H〉c], (5)

with

C1 = 2ν − 1,

C2 = C3 = − 1√
2

√
1− µ

√
1− ν

2ν − 1
,

C4 =

√
µ
√
ν

2ν − 1
. (6)

Obviously, we can obtain a|W〉4 with |C2| = |C3| = |C4| = 1√
3
, which means that the parameterν for the PDBS must satisfy

4ν3+3ν2−6ν+1 = 0. So, we can get the corresponding values of(ν, µ), and the success probabilityPs(|W〉4) = (2ν−1)2/2.
It should be noted that(ν, µ) are defined in the range(0, 1). Thus the values of (ν, µ) are(0.7726, 0.1283) or (0.1890, 0.6823).
As ν has two values, so does the success probabilityPs(|W〉4). Therefore,Ps(|W〉4) can be maximized by choosing one set
(ν, µ) from the two possible sets.

This scheme can be generalized to the case of fusing|W〉N state and|W〉M state into a|W〉N+M−1 state(N 6= M). The
multi-qubit state|W〉N can be used as a shared resource for teleportation and superdense coding, which was detailed in Ref. [30].
Two initial states can be written as follows:

|W〉N =
1√
2
[|HH . . .HV 〉1...N +

1√
N − 1

(|HH . . . V H〉1...N + . . .+ |V H . . .HH〉1...N ], (7a)

|W〉M =
1√
2
[|HH . . .HV 〉1...M +

1√
M − 1

(|HH . . . V H〉1...M + . . .+ |V H . . .HH〉1...M ]. (7b)

Two photons coming from these two initial states (sayN th andM th photons) respectively, will be sent into the input modesa
andb of the PDBS. Similarly, we are only interested in the case where a photon is present in each of the modesc andd, and the
conditions the parametersµ, ν must satisfy can be written as

4(N −M)ν3 + (−9N + 3M + 6)ν2 + (6N − 6)ν − (N − 1) = 0, (8a)

√
µν√

N − 1
=

√
(1− µ)(1 − ν)√

M − 1
. (8b)
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TABLE I: List of the values ofN,M,µ, ν andPs(|W〉N+M−1).

N M (ν, µ)1 (ν, µ)2 Ps(W̃N+M−1)max

2 2 (0.7887, 0.2113) (0.2113, 0.7887) 0.1667

2 3 (0.7726, 0.1283) (0.4890, 0.6823) 0.1486

3 3 (0.7887, 0.2113) (0.2113, 0.7887) 0.1667

3 4 (0.7789, 0.1598) (0.1990, 0.7285) 0.1812

4 4 (0.7887, 0.2113) (0.2113, 0.7887) 0.1667

4 5 (0.7812, 0.1735) (0.2028, 0.7467) 0.1767

5 5 (0.7887, 0.2113) (0.2113, 0.7887) 0.1667

5 6 (0.7828, 0.1816) (0.2047, 0.7573) 0.1744

6 6 (0.7887, 0.2113) (0.2113, 0.7887) 0.1667

6 7 (0.7838, 0.1868) (0.2060, 0.7629) 0.1729

7 7 (0.7887, 0.2113) (0.2113, 0.7887) 0.1667

7 8 (0.7846, 0.1906) (0.2069, 0.7665) 0.1718

8 8 (0.7887, 0.2113) (0.2113, 0.7887) 0.1667

8 9 (0.7851, 0.1932) (0.2075, 0.7697) 0.1711

9 9 (0.7887, 0.2113) (0.2113, 0.7887) 0.1667

9 10 (0.7855, 0.1953) (0.2080, 0.7716) 0.1705

10 10 (0.7887, 0.2113) (0.2113, 0.7887) 0.1667

. . . . .

. . . . .

. . . . .

By fixing N andM , one can get the corresponding values ofµ andν by solving the two equations above. However, with
the increase of the size of the output state|W〉k(k ≥ 5), there are more and more solutions. For example,|W〉5 can be
generated by fusing two|W〉3 states or a|W〉2 and a|W〉4 state. But according to the discussions in Ref. [16], there is such a
conclusion that the closer the sizes of the two resource states are, the lower the cost is, i.e. it is optimal to generate|W〉N states
by fusing two resource states of similar size. Following this approach, in Table.I, we give a list of the values forN,M, µ, ν
andPs(|W〉N+M−1) for some optimal fusion strategies.Ps(|W〉N+M−1) is the corresponding maximum success probability
((2ν− 1)2/2) for the combinations(ν, µ). Moreover, it should be emphasized that the values of (ν, µ) do not depend on the size
of the input states when the size of the input states are equal, i.e. when fusing two identical|W〉N states, the values of (ν, µ) are
fixedµ = (3 ±

√
3)/6, ν = (3 ∓

√
3)/6.

By using this scheme,|W〉3 state can be prepared by fusing two|W〉2 states, and notice that the|W〉2 state is a maximally
entangled Bell state. So if we take the Bell state as the initial resource, arbitrary size|W〉N can be generated via the fusion
strategy above.

In addition, if an H-polarized photon is detected inD1, the fusion process fails in general (N > 2,M > 2). In particular,
whenN = M = 2 , |W〉3 state will be generated if V-polarized photon( H-polarizedphoton) is detected inD2 (D1). It is worth
mentioning that the Bell state can also be generated from twosingle-photon states by this fusion strategy too [31].

B. Creation of large-scale |W〉 state by expanding small-size |W〉 states

Here, we propose a simple scheme for expanding a polarization-entangled|W〉N state by adding an H-polarized ancilla
photon. With the help of a PDBS, one of the photons in the|W〉N state will interfere with an H-polarized photon, and after
post-selection a|W〉N+1 state can be generated. As depicted in Fig.1 one (say theN th) of the photons in the|W〉N state is
inputted in modea, and the H-polarized auxiliary photon is added in modeb. Here, we only select those events where there is
only one photon in each output mode. After coupling on the PDBS, the state of the photons can be written as

1√
2
[C1|HH . . .HV H〉1...N(N+1) + C2|HH . . .HHV 〉1...N(N+1)

+C3(|HH . . . V HH〉1...N(N+1) + . . .+ |V H . . .HHH〉1...N(N+1)], (9)
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with

C1 =
√
µ
√
ν,

C2 = = −
√
(1− µ)(1 − ν),

C3 =
(2µ− 1)√
N − 1

. (10)

In addition, when|C1

C2

| = |C3

C2

| = 1√
N

, a|W〉N+1 state will be obtained with success probabilityPs(|W〉N+1) = (1−µ)(1−ν),

and the corresponding condition thatµ must satisfy is4(N − 1)µ3 − (3N − 7)µ2 − 4µ + 1 = 0. The values ofµ andν will
be determined when N is given. For example, asN = 2, µ andν have two possible combinations:µ1 = 0.2991, ν1 = 0.5398
andµ2 = 0.6799, ν2 = 0.1904. In this case, no photon detection is needed during the expansion process, and the verification
process of the event where a photon is present in each of the two output modes of the PDBS and the applications of the output
state are realized simultaneously.

III. CREATION OF LARGE-SIZE MAXIMALLY ENTANGLED W STATES BY FUSING OR EXPANDING |W〉 STATES

In this section, we propose an effective scheme to prepare large-scale maximally entangled W states by fusing or expanding
|W〉N states. Based on the selective transmission rates of PDBS for different polarization states, a maximally entangled state
can be generated by selecting suitable parameters(µ, ν). Because the scheme can generate maximally entangled states in terms
of non-maximally entangled states, it may play important roles in quantum communication.

A. Creation of large-scale |W 〉 state by fusing small-size |W〉 states

We will now demonstrate how a large-scale maximally entangled W state can be generated by fusing small-size|W〉N states.
First, let’s consider the case of fusing two identical tri-photon W-class states into a five-photon maximally entangledstate. Two
input states can be written as

|W〉3 =
1√
2
[|HHV 〉123 +

1√
2
(|V HH〉123 + |HVH〉123)], (11a)

|W〉3 =
1√
2
[|HHV 〉456 +

1√
2
(|V HH〉456 + |HVH〉456)]. (11b)

In this fusion process, two photons (say photons 3, 6) respectively coming from these two|W〉3 states will be sent into the input
modesa andb of a PDBS. In the case where there is only one photon in each output mode, we can get a five-qubit W-like state:

|W̃ 〉5 = C1|HHHH〉1245|V 〉c + C2|HHHV 〉1245|H〉c + C3|HHVH〉1245|H〉c
+C4|HVHH〉1245|H〉c + C5|V HHH〉1245|H〉c, (12)

with

C1 =
1

2
(2ν − 1),

C2 = − 1

2
√
2

√
1− µ

√
1− ν,

C3 = − 1

2
√
2

√
1− µ

√
1− ν,

C4 =
1

2
√
2

√
µ
√
ν,

C5 =
1

2
√
2

√
µ
√
ν, (13)

when a V-polarized photon is detected in detectorD2. If the parameters(µ, ν) for the PDBS are chosen to beµ = 2/3, ν = 1/3
or vice versa,C1 = C2 = C3 = C4 = C5, and thus the W-like state obtained here becomes a standard Wstate. Then a
five-photon maximally entangled state can be generated withsuccess probabilityPs(W5) = 5/36.
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This fusion scheme can be generalized to the case of generating a(2N − 1)-qubit maximally entangled W state by fusing two
|W〉N states. To begin with this fusion strategy, one (say theN th) photon from each|W〉N state will be sent into a PDBS and the
parameters(µ, ν) for the PDBS are chosen to beµ = [(4N−3)+

√
4N − 3]/2(4N−3), ν = [(4N−3)−

√
4N − 3]/2(4N−3)

or vice versa. If we are only interested in the case where a photon is present in each of the output modes, a maximally entangled
|W 〉2N−1 state can be generated when a V-polarized photon is detectedin D2:

|W 〉2N−1 =
1√

2N − 1
[|HH . . .HV 〉12...(2N−1) + |HH . . . V H〉12...(2N−1) + . . .

+ |HV . . .HH〉12...(2N−1) + |V H . . .HH〉12...(2N−1)]. (14)

The fusion process is also applicable to fusing a|W〉N state and a|W〉M state (N 6= M ) into a maximally entangled|W 〉N+M−1

state. In such a situation, the values ofµ, ν are dependent onN,M :

4(N −M)ν3 + (4M − 8N + 3)ν2 + (5N −M − 3)ν − (N − 1) = 0, (15a)

√
µν√

N − 1
=

√
(1− µ)(1 − ν)√

M − 1
. (15b)

WhenN,M are given,µ andν can be determined. For example, whenN = 3 andM = 4, (ν, µ) have two possible com-
binations:(0.3448, 0.5589) or (0.6469, 0.2669). Here(ν, µ) are defined in the range(0, 1) too, and the success probability is
Ps(WN+M−1) = (2ν − 1)2(N +M − 1)/4.

It should be emphasized that, although we only discussed thesituation of the photon is present in each of the modesc andd,
we also explored the case where two photons are in the same output mode. As in Ref. [30], there exists recyclable case in our
strategy, i.e., two maximally entangledW states|Wn−1〉 and|Wm−1〉 can be left if twoH-polarized photons are detected in
D1. According to Ref. [30], these two maximally entangledW states can serve as the initial resource for the further fusion.

B. Creation of large-scale |W 〉 state by expanding small-size |W〉 states

In this subsection, let’s introduce the strategy for expanding |W〉N state into maximally entangled|WN+1〉 state. The|W〉N
state can be written as in Eq.(2). One of the photons (say theN th) from |W〉N and an H-polarized auxiliary photon will be sent
into a PDBS for completing the expansion process. If we are only interested in the case where a photon is present in each of the
output modes of the PDBS, the following state can be generated:

1√
2
[C1|HH . . .HV H〉1...N(N+1) + C2|HH . . .HHV 〉1...N(N+1)

+C3(|HH . . . V HH〉1...N(N+1) + . . .+ |V H . . .HHH〉1...N(N+1))]. (16)

with

C1 =
√
µ
√
ν,

C2 = = −
√
(1− µ)(1 − ν),

C3 =
(2µ− 1)√
N − 1

. (17)

If the parameters(µ, ν) for the PDBS are chosen to beµ = [(N + 3) ±
√
(N + 3)(N − 1)]/2(N + 3), ν = [(N + 3) ∓√

(N + 3)(N − 1)]/2(N+3), |C1| = |C2| = |C3| holds, which means that when the input states are known for us, a maximally
entangled state can be generated with success probabilityPs(WN+1) = µν(N + 1)/2 by ajusting the parameters(µ, ν) for the
PDBS.

IV. COST ANALYSIS AND DISCUSSION

In this section, we will make a brief discussion on the resource cost of our strategies for fusing small-size|W〉N states into
larger-scale|W〉N state or W state. With the PDBS fusion mechanism, a large-scale maximally entangled W state can be
generated by fusing small-size|W〉N states. In addition, one of our previous works shows that thePDBS fusion mechanism can
be used to generate a large-scale maximally entangled W state by fusing small-size maximally entangled W states too [31]. So
it is necessary to make a cost comparison analysis among these two strategies. Because the two fusion strategies both start from
|W2〉 state, we can define the basic resource cost for preparing|W2〉 as the unit cost, i.e.R[W2] = 1, and make a comparison on
the optimal cost of these two strategies by numerical evaluation.
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A. Cost analysis of fusing small-size |W〉N states into larger-scale |W〉N state

In Ref. [16], the resource cost of preparing a large W state isdefined as follows:

R[Wm+n−1] =
R[Wm] +R[Wn]

Ps(Wm,Wn)
, (18)

where bothWm andWn are maximally entangled W states, andPs(Wm,Wn) is the success probability of the fusion process.
Similarly, because our fusion strategy starts from the standard|W2〉 state, the resource cost of generating a|W〉N+M−1 state by
fusing |W〉N state and a|W〉M state can also be calculated in the same way. The success probability of getting a|W〉N+M−1

state isPs(|W〉N+M−1) = (2ν − 1)2/2, and thus the resource cost can be expressed as

R[WN+M−1] =
(R[WN ] +R[WM ])

Ps(WN+M−1)
. (19)

The numerical results of resource costR[WN+M−1] are shown in Fig.2 for the optimal fusion processes, where the sizes of the
input state are similar and the parameters of the PDBS have been chosen to maximize the success probabilities.
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FIG. 2: (Color online) The resource costs of fusing a|W〉N state and a|W〉M state into a|W〉N+M−1 state. The basic resource is the
maximally entangled|W 〉2 state. The vertical axis is the resource cost and horizontalaxis is the size of the output|W〉 state.

B. Cost comparison

Here, we compare the resource cost of two different strategies for generating a maximally entangled W state. In the first
strategy, a large-scale maximally entangled W state can be generated by fusing two small-size maximally entangled W states (a
|Wn〉 state and a|Wm〉 state) [31], and its resource cost is denoted asR[Wm+n−1]. The second fusion is the one we proposed
in this letter, i.e. a large-scale maximally entangled|Wn+m−1〉 state can be generated by fusing a|Wn〉 state and a|Wm〉
state, and its resource cost is denoted byR[Wm+n−1]

′. BothR[Wm+n−1] andR[Wm+n−1]
′ are calculated in terms of the unit

R[W2] = 1. FIG.3 shows that the resource costR[Wm+n−1]
′ of the second method (red) is lower than that of the one using the

first method (black). The fusion strategy starting from nonmaximally entangled|W〉 states is more efficient than the one starting
from maximally entangled W states.

V. CONCLUSION

In conclusion, we have proposed a fusion strategy of generating large-scale|W〉 photonic state, which plays an important role
in perfect teleportation and superdense coding. Our fusionstrategy can start from Bell states. The main fusion mechanism is a
PDBS, and no controlled gate is needed. The fusion process can succeed by adjusting the parameters of the PDBS, which makes
the current scheme simple and feasible. Furthermore, with this fusion mechanism, a large-scale maximally entangled W state
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FIG. 3: (Color online) The resource costs comparison: the fusion strategy of generating|WN+M−1〉 from |Wn〉 and|Wm〉 (black), and the
fusion strategy of generating|WN+M−1〉 from |W〉N and|W〉M (red). The basic resource cost for preparing maximally entangled|W2〉 is
defined as unit cost. The vertical axis is the resource cost and horizontal axis is the size of the output W state.

can be generated by fusing small-size|W〉 states as well. The cost analysis show that our fusion strategy is more efficient than
the one starting from maximally entangled W states [31]. Thepossibilities of generating large-scale|W〉 states and|W 〉 states
via expansion mechanism have also been studied.
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