Skip to main content
Log in

Study on the security of the authentication scheme with key recycling in QKD

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In quantum key distribution (QKD), the information theoretically secure authentication is necessary to guarantee the integrity and authenticity of the exchanged information over the classical channel. In order to reduce the key consumption, the authentication scheme with key recycling (KR), in which a secret but fixed hash function is used for multiple messages while each tag is encrypted with a one-time pad (OTP), is preferred in QKD. Based on the assumption that the OTP key is perfect, the security of the authentication scheme has be proved. However, the OTP key of authentication in a practical QKD system is not perfect. How the imperfect OTP affects the security of authentication scheme with KR is analyzed thoroughly in this paper. In a practical QKD, the information of the OTP key resulting from QKD is partially leaked to the adversary. Although the information leakage is usually so little to be neglected, it will lead to the increasing degraded security of the authentication scheme as the system runs continuously. Both our theoretical analysis and simulation results demonstrate that the security level of authentication scheme with KR, mainly indicated by its substitution probability, degrades exponentially in the number of rounds and gradually diminishes to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999)

    Article  ADS  Google Scholar 

  4. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    Article  ADS  Google Scholar 

  5. Kimura, T., Nambu, Y., Hatanaka, T., Tomita, A., Kosaka, H., Nakamura, K.: Single-photon interference over 150 km transmission using silica-based integrated-optic interferometers for quantum cryptography. Jpn. J. Appl. Phys. 43, L1217 (2004)

    Article  ADS  Google Scholar 

  6. Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  7. Walenta, N., Burg, A., Caselunghe, D., Constantin, J., Gisin, N., Guinnard, O., Houlmann, R., Junod, P., Korzh, B., Kulesza, N., Legr, M., Lim, C.C.W., Lunghi, T., Monat, L., Portmann, C., Soucarros, M., Trinkler, P., Trolliet, G., Vannel, F., Zbinden, H.: A fast and versatile QKD system with hardware key distillation and wavelength multiplexing. New J. Phys. 16, 013047 (2014)

    Article  ADS  Google Scholar 

  8. Gilbert, E.N., Mac Williams, F.J., Sloane, N.J.A.: Codes which detect deception. Bell Syst. Tech. J. 53, 405–424 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18, 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 22, 265–279 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Stinson, D.R.: Universal hashing and authentication codes. Des. Codes Cryptogr. 4, 369–380 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Atici, M., Stinson, D.R.: Universal hashing and multiple authentication. In: Annual International Cryptology Conference, 1109, pp. 16–30. Springer, Berlin, Heidelberg (1996)

  13. Abidin, A.: On security of universal hash function based multiple authentication. In: International Conference on Information and Communications Security, 7618, pp. 303–310. Springer, Berlin, Heidelberg (2012)

  14. Portmann, C.: Key recycling in authentication. IEEE Trans. Inf. Theory 60, 4383–4396 (2014)

    Article  MathSciNet  Google Scholar 

  15. Abidin, A., Larsson, J. Å.: Security of authentication with a fixed key in quantum key distribution. arXiv preprint (2011)

  16. Zhou, C., Bao, W.-S., et al.: Key-leakage evaluation of authentication in quantum key distribution with finite resources. Quantum Inf. Process. 13, 935–955 (2014)

    Article  ADS  MATH  Google Scholar 

  17. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. Trans. Inf. Theory 41, 1915–1923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ben-Or, M., Horodecki, M., Leung, D.W., et al.: The universal composable security of quantum key distribution. In: Theory of Cryptography Conference, 3378, pp. 386–406. Springer, Berlin, Heidelberg (2005)

  19. Stinson, D.R.: Cryptography Theory and Practice, 3rd edn. CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  20. Gottesman, D., Lo, H.K., Lutkenhaus, N., et al.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Numbers: 61471141, 61361166006, 61301099), Fundamental Research Funds for the Central Universities (Grant Number: HIT. KISTP. 201416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Li.

Appendix: Estimation of the number of uncertain hash functions

Appendix: Estimation of the number of uncertain hash functions

Based on the information leakage of OTP key in the ith round of authentication, Eve can sift out a subset \({{\mathcal{H}_i}}\) of size \(n_0\) from \(\mathcal{H}\). After i rounds, the set of uncertain hash functions is decreased to \(S_i=\cap _{j = 1}^{i}{\mathcal{H}_j}\). Let \({X_i} = \left| S_i\right| - 1\), indicating the number of false hash functions. Suppose \({X_{i - 1}} = n_{i-1}\), the probability of \({X_i} = j\) satisfies the hypergeometrical distribution [15], i.e.,

$$\begin{aligned} {} P({X_i} = j|{X_{i - 1}} = {n_{i - 1}}) = \frac{{\left( {\begin{array}{ll} {{n_{i - 1}}}\\ j \end{array}} \right) \left( {\begin{array}{ll} {\left| \mathcal{H} \right| - 1 - {n_{i - 1}}}\\ {{n_0} - 1 - j} \end{array}} \right) }}{{\left( {\begin{array}{ll} {\left| \mathcal{H} \right| - 1}\\ {{n_0} - 1} \end{array}} \right) }} \end{aligned}$$
(11)

According to Eq. 11, the expected value of \(X_i\) on the condition that \(X_{i-1}=n_{i-1}\) can be deducted as Eq. 12.

$$\begin{aligned} {} \begin{aligned} E({X_i}|{X_{i - 1}}= {n_{i - 1}})&= \sum \limits _{j = 0} j \times P({X_i} = j|{X_{i - 1}} = {n_{i - 1}})\\&= \sum \limits _{j = 0} {j\frac{{\left( {\begin{array}{ll} {{n_{i - 1}}}\\ j \end{array}} \right) \left( {\begin{array}{ll} {\left| \mathcal{H} \right| - 1 - {n_{i - 1}}}\\ {{n_0} - 1 - j} \end{array}} \right) }}{{\left( {\begin{array}{ll} {\left| \mathcal{H} \right| - 1}\\ {{n_0} - 1} \end{array}} \right) }}}\\&= \frac{{{n_0} - 1}}{{\left| \mathcal{H} \right| - 1}} \times {n_{i - 1}}\;\sum \limits _{j = 1} {\frac{{\left( {\begin{array}{ll} {{n_{i - 1}} - 1}\\ {j - 1} \end{array}} \right) \left( {\begin{array}{ll} {\left| \mathcal{H} \right| - 1 - {n_{i - 1}}}\\ {{n_0} - 1 - j} \end{array}} \right) }}{{\left( {\begin{array}{ll} {\left( {\left| \mathcal{H} \right| - 1} \right) - 1}\\ {\left( {{n_0} - 1} \right) - 1} \end{array}} \right) }}} \\&= \frac{{{n_0} - 1}}{{\left| \mathcal{H} \right| - 1}} \times {n_{i - 1}}\;\frac{{\sum \limits _{j = 1} {\left( {\begin{array}{ll} {{n_{i - 1}} - 1}\\ {j - 1} \end{array}} \right) \left( {\begin{array}{ll} {\left| \mathcal{H} \right| - 1 - {n_{i - 1}}}\\ {{n_0} - 1 - j} \end{array}} \right) } }}{{\left( {\begin{array}{ll} {\left( {\left| \mathcal{H} \right| - 1} \right) - 1}\\ {\left( {{n_0} - 1} \right) - 1} \end{array}} \right) }}\\&= \frac{{{n_0} - 1}}{{\left| \mathcal{H} \right| - 1}} \times {n_{i - 1}}\frac{{\left( {\begin{array}{ll} {\left( {\left| \mathcal{H} \right| - 1} \right) - 1}\\ {\left( {{n_0} - 1} \right) - 1} \end{array}} \right) }}{{\left( {\begin{array}{ll} {\left( {\left| \mathcal{H} \right| - 1} \right) - 1}\\ {\left( {{n_0} - 1} \right) - 1} \end{array}} \right) }}\\&= \;\frac{{{n_0} - 1}}{{\left| \mathcal{H} \right| - 1}} \times {n_{i - 1}}\; \end{aligned} \end{aligned}$$
(12)

Let \(\frac{{{n_0} - 1}}{{\left| \mathcal{H} \right| - 1}} = \eta \), \(E({X_i}|{X_{i - 1}} = {n_{i - 1}}) = \eta \times {n_{i - 1}}\). Consequently, the value of \(X_i\) can be estimated as Eq. 13 according to the law of total probability.

$$\begin{aligned} \begin{aligned} {X_i}&\approx E\left[ {{X_i}} \right] \\&= \sum \limits _j {j \times P\left( {{X_i} = j} \right) } \\&= \sum \limits _j {j \times \sum \limits _k {P\left( {{X_i} = j} \right) \left| {P\left( {{X_{i - 1}} = k} \right) } \right. } } P\left( {{X_{i - 1}} = k} \right) \\&= \sum \limits _k {P\left( {{X_{i - 1}} = k} \right) \sum \limits _j {j \times P\left( {{X_i} = j} \right) \left| {P\left( {{X_{i - 1}} = k} \right) } \right. } } \\&= \sum \limits _k {P\left( {{X_{i - 1}} = k} \right) E\left( {{X_i}\left| {{X_{i - 1}} = k} \right. } \right) } \\&= \sum \limits _k {P\left( {{X_{i - 1}} = k} \right) \times \eta } \times k\\&= \eta \sum \limits _k {k \times P\left( {{X_{i - 1}} = k} \right) }\\&= \eta E\left( {{X_{i - 1}}} \right) \\&= {\eta ^2}E\left( {{X_{i - 2}}} \right) = \cdots = {\eta ^i}E\left( {{X_0}} \right) = {\eta ^i}{n_0} \end{aligned} \end{aligned}$$
(13)

Therefore, the value of \(Y_i\) can be estimated as Eq. 14

$$\begin{aligned} {Y_i} \approx E\left[ {{Y_i}} \right] = E\left[ {{X_i} + 1} \right] = {n_0}{\eta ^i} + 1. \end{aligned}$$
(14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhao, Q., Le, D. et al. Study on the security of the authentication scheme with key recycling in QKD. Quantum Inf Process 15, 3815–3831 (2016). https://doi.org/10.1007/s11128-016-1347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1347-3

Keywords

Navigation