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Abstract Ramsey theory is an active research area in combinatorics whose central
theme is the emergence of order in large disordered structures, with Ramsey num-
bers marking the threshold at which this order first appears. For generalized Ramsey
numbers r(G,H), the emergent order is characterized by graphs G and H. In this pa-
per we: (i) present a quantum algorithm for computing generalized Ramsey numbers
by reformulating the computation as a combinatorial optimization problem which is
solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers
r(Tm,Tn) for trees of order m,n = 6,7,8, most of which were previously unknown.
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1 Introduction

To get a taste of the type of problem considered in Ramsey theory, consider an arbi-
trary gathering of N people. One might wonder whether there is a group of m people
at the party who are all mutual acquaintances, or a group of n people who are all
mutual strangers. Using Ramsey theory [1,2] it can be shown that once the party size
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N reaches a threshold size r(m,n), every party with N ≥ r(m,n) people must contain
either m mutual acquaintances or n mutual strangers. The unforced and guaranteed
emergence of order (viz. a cluster of m mutual friends or n mutual strangers) upon
reaching the threshold size is an essential characteristic of problems in Ramsey the-
ory. The threshold r(m,n) is an example of a two-color Ramsey number.

It proves fruitful to represent the N-person party problem by an N-vertex graph.
Each party-goer is identified with a vertex, and a red (blue) edge is drawn between a
pair of vertices when the corresponding people are acquaintances (strangers). Since
any two people attending will either know each other or not, every pair of vertices
is joined by a red or blue edge. The party graph is thus the complete graph KN (all
vertex pairs joined by an edge) with edges colored red or blue. Notice that the group
of m mutual acquaintances (strangers) corresponds to a red Km (blue Kn) subgraph
of KN . The Ramsey theory result for the party problem becomes a theorem in graph
theory [3]: if the order N of the complete graph KN satisfies N ≥ r(m,n), then every
red/blue coloring of the edges of KN contains either a red Km or a blue Kn subgraph.

The classical two-color Ramsey numbers r(m,n) are extremely difficult to cal-
culate, with only 9 values currently known [4]. It was once hoped that by consid-
ering proper subgraphs G ⊂ Km and H ⊂ Kn, generalized Ramsey numbers r(G,H)
might prove easier to calculate and inspire new techiques that would also work for
r(m,n)≡ r(Km,Kn). Although these hopes have not been borne out to date, the study
of generalized Ramsey numbers is now an active, well established part of Ramsey the-
ory. Formally, for given graphs G and H, the generalized Ramsey number r(G,H) is
defined to be the smallest positive integer p for which every red/blue edge-coloring of
the complete graph Kp contains either a red G or a blue H subgraph [1,3]. Generalized
Ramsey numbers can also be defined for families of graphs G and H . Such families
typically partition into graph isomorphism (GI) classes {G i ⊂ G } and {H j ⊂H },
and associated with each pair of classes is a generalized Ramsey number r(G i,H j).
We write r(G ,H ) for the set of all such Ramsey numbers. Early tabulations of gen-
eralized Ramsey numbers with G and H of order at most 5 appear in Refs. [5,6,7,8],
while Ref. [4] presents the current state-of-the-art.

In this paper we present a quantum algorithm for computing generalized Ramsey
numbers. We reformulate the computation as a combinatorial optimization problem
which is solved using adiabatic quantum optimization; and determine the Ramsey
numbers r(Tm,Tn) for trees of order m,n = 6,7,8, most of which were previously
unknown. The quantum algorithm presented here generalizes an earlier adiabatic
quantum algorithm for classical Ramsey numbers r(m,n) [9] which was used to ex-
perimentally determine a number of small Ramsey numbers [10].

The structure of this paper is as follows. In Section 2 we summarize the basic con-
cepts from graph theory that will be needed in the remainder of the paper. Section 3
then shows how the computation of r(G,H) can be transformed into a combinatorial
optimization problem whose solution is found using adiabatic quantum optimization
[11]. Calculation of the generalized Ramsey numbers r(Tm,Tn) for trees of order
m,n = 6,7,8 appears in Section 4. In the interests of clarity, this section focuses on
the simplest case with m,n = 6; the remaining tree Ramsey numbers appear in Ap-
pendix B. The paper closes with a summary of our results in Section 5, and for the
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reader’s convenience, we collect previously known results for tree Ramsey numbers
in Appendix A.

2 Preliminaries

We begin by reviewing those ideas from graph theory [3] that will be central to our
discussion. In the following all sets will be finite. We denote the cardinality of the set
X by |X |, and the set of all 2-subsets of X by X (2).

A graph G is specified by a non-empty set of vertices VG and a set of edges
EG ⊆V (2)

G . The order (size) of G is denoted |VG| (|EG|). A graph G′ is a subgraph of
a graph G iff VG′ ⊆VG and EG′ ⊆ EG. We denote by Kn, Pn, and K1,n−1 the complete
graph, path, and star of order n, respectively. Lastly, we denote by Ln the set of 2(

n
2)

distinct vertex-labelled graphs with fixed n-vertex set, and by Un the set of vertex-
unlabelled graphs of order n.

Two graphs G1 and G2 are isomorphic (G1 ∼= G2) iff there there exists a bijection
f : VG1 →VG2 such that {u,v} ∈ EG1 iff { f (u), f (v)} ∈ EG2 . The bijection f is called
an isomorphism of G1 and G2. We write G1 vG2 iff there exists a subgraph G′ ⊆G2
such that G1 ∼= G′.

A red-blue coloring of the edges of a graph G is a map c : EG → {red,blue}.
Given a graph G and an edge-coloring c of G, the red subgraph Gr(c) has vertex set
VG and edge set {e ∈ EG : c(e) = red}. Similarly, the blue subgraph Gb(c) has vertex
set VG and edge set {e ∈ EG : c(e) = blue}. Finally, we define the arrow relation
between graphs F , G, and H. We write F → (G,H) iff, for all edge-colorings c :
EF →{red,blue}, either Gv Fr(c) or H v Fb(c).

With these definitions in place, we are now in a position to define the generalized
Ramsey numbers.

Definition 1 Given graphs G and H, the generalized Ramsey number r(G,H) is:

r(G,H) = min{n ∈ P : Kn→ (G,H)}.

A red-blue edge-colored graph F is said to be (G,H)-critical iff: (i) F has order
r(G,H)−1, and (ii) G 6v Fr(c) and H 6v Fb(c).

We collect literature results pertaining to generalized Ramsey numbers for certain
families of trees in Appendix A. These results allow us to determine which of the tree
Ramsey numbers calculated in Section 4 and Appendix B are new, and provide checks
for the rest.

3 Quantum algorithm for generalized Ramsey numbers

In this Section we present an adiabatic quantum algorithm for computing generalized
Ramsey numbers. We first show (Section 3.1) how a computation of the generalized
Ramsey number r(G,H) can be transformed into a combinatorial optimization prob-
lem (COP) which is then solved (Section 3.2) using adiabatic quantum optimization.
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The resulting algorithm generalizes an earlier adiabatic quantum algorithm for classi-
cal two-color Ramsey numbers [9] which has been used to experimentally determine
a number of small Ramsey numbers [10].

3.1 Generalized Ramsey numbers through combinatorial optimization

Red-blue edge-colorings of KN are an essential ingredient in the definition of r(G,H).
Each such coloring can be represented by a Boolean string

e = (e1,2, . . . ,ei, j, . . .eN−1,N)

of length
(N

2

)
, where ei, j = 1 (0) if the edge {i, j} (with i < j) is colored red (blue).

For a given coloring e of KN , let Kr
N(e) and Kb

N(e) denote, respectively, its red and
blue subgraphs.

Let e be a coloring of KN . The following procedure counts the number of red
subgraphs of Kr

N(e) that are isomorphic to G. To begin, choose |VG| vertices from the
N vertices of KN , and denote this choice by Sα = {v1, . . . .v|VG|}. Next, let Kr

α(e) be the
subgraph of Kr

N(e) with vertex set Sα and edge set Er
α(e) = {{i, j}|(i, j ∈ Sα)

∧
(i <

j)
∧
(ei, j = 1)}. We show below that the following Boolean function evaluates to 1

(True) if G∼= Kr
α(e) is True, and to 0 (False) otherwise:

f [G∼= Kr
α(e)] =

∨
π∈Sym(VG)

∧
{i, j}∈EG

eπ(i),π( j). (1)

Here VG (EG) is the vertex (edge) set of G; and Sym(VG) is the symmetric group on VG.
Notice that if G∼=Kr

α(e) is True, there exists a permutation π that transforms VG→ Sα

and preserves adjacency so that eπ(i),π( j) = 1 iff {i, j} ∈ EG. Thus the conjunction
over EG evaluates to 1 for this permutation, and so the disjunction evaluates to 1.
On the other hand, if G ∼= Kr

α(e) is False, no permutation π exists which preserves
adjacency, and so for each permutation, at least one eπ(i),π( j) = 0 for {i, j} ∈ EG.
The conjunction thus evaluates to 0 for all permutations π , and the disjunction then
evaluates to 0. Summing f [G ∼= Kr

α(e)] over all vertex choices Sα gives the number
of red subgraphs of Kr

α(e) that are isomorphic to G. Denoting this sum as ON(e;G),
we have

ON(e;G) = ∑
Sα

f [G∼= Kr
α(e)]. (2)

In a similar manner, the number of blue subgraphs of Kb
N(e) isomorphic to H is

ON(e;H) = ∑
Sβ

f [H ∼= Kb
α(e)], (3)

where: (i) Sβ = {v1, . . . ,v|VH |} is a choice of |VH | vertices from the N vertices of
KN ; (ii) Kb

β
(e) is the subgraph of Kb

N(e) with vertex set Sβ and edge set Eb
β
(e) =

{{i, j}|(i, j ∈ Sβ )
∧
(i < j)

∧
(ei, j = 0)}; and

f [H ∼= Kb
β
(e)] =

∨
π∈Sym(VG)

∧
{i, j}∈EG

eπ(i),π( j), (4)
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where eπ(i),π( j) = 1− eπ(i),π( j).
We now define an objective function ON(e;G,H) which assigns to each coloring

e (of KN) the total number of red and blue subgraphs it contains that are, respectively,
isomorphic to G and H:

ON(e;G,H) = ON(e;G)+ON(e;H). (5)

From Ramsey theory we know that if N < r(G,H), then there is a coloring e∗ for
which G 6v Kr

N(e∗) and H 6v Kb
N(e∗). For this coloring the objective function vanishes

and so
min

e
[ON(e;G,H)] = 0, (N < r(G,H)). (6)

On the other hand, if N ≥ r(G,H), we know that KN → (G,H) and so

min
e

[ON(e;G,H)]> 0, (N ≥ r(G,H)). (7)

The above discussion suggests the following COP for r(G,H). Given graphs G
and H, and a positive integer N, find a coloring e∗ of KN that minimizes the objective
function ON(e;G,H). As we have just seen, if N < r(G,H), the minimum value of
the objective function will be 0, while if N ≥ r(G,H), the minimum value will be
positive. This motivates the following classical optimization algorithm for finding
r(G,H) which will guide our construction of the quantum algorithm in Section 3.2.

1. Choose N to be a strict lower bound for r(G,H). In principle, the probabilistic
method [12] can always be used to produce such a lower bound, though in some
cases, such lower bounds may already be available in the literature (e. g., see
Ref. [4]).

2. Solve the COP for the minimum value of ON(e;G,H). Since N < r(G,H) we
know that mine [ON(e;G,H)] = 0.

3. Increment N → N + 1 and determine the minimum value of ON(e;G,H) for this
new N. If the minimum is zero, continue incrementing N → N + 1 and finding
the minimum value of the new objective function until min [ON(e;G,H)] first
becomes positive. When this first occurs, the algorithm returns the current value
of N as the Ramsey number r(G,H) since this is the smallest N for which KN →
(G,H).

We next show how this classical optimization algorithm can be promoted to an adia-
batic quantum optimization for r(G,H).

3.2 Adiabatic quantum algorithm for r(G,H)

Here we show how the classical optimization algorithm for r(G,H) (Section 3.1) can
be converted into an quantum algorithm.

The adiabatic quantum optimization (AQO) algorithm [11] exploits the adiabatic
dynamics of a quantum system to solve COPs. The AQO algorithm uses the objec-
tive function for the COP to define a problem Hamiltonian HP whose ground-state
subspace encodes all optimal solutions. The algorithm evolves the state of an L-qubit
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register from the ground-state of an initial Hamiltonian Hi to the ground-state of HP
with probability approaching 1 in the adiabatic limit. An appropriate measurement at
the end of the adiabatic evolution yields a solution of the COP almost certainly. The
time-dependent Hamiltonian H(t) for AQO is

H(t) = A(t/T )Hi +B(t/T )HP, (8)

where T is the algorithm runtime, adiabatic dynamics corresponds to T → ∞, and
A(t/T ) [B(t/T )] is a positive monotonically decreasing [increasing] function with
A(1) = 0 [B(0) = 0].

The point of departure for converting the classical optimization algorithm for
r(G,H) into an adiabatic quantum algorithm is the set of binary edge-coloring strings
e introduced in Section 3.1 for graphs of order N. Each of the L =

(N
2

)
bits in e is

promoted to a qubit so that the adiabatic quantum algorithm uses L qubits. The 2L

strings e are used to label the 2L computational basis states (CBS) that span the L-
qubit Hilbert space: e→ |e〉 = |e0 · · ·eL−1〉, with ei = 0,1 for i = 0, . . . ,L− 1. The
problem Hamiltonian HP is defined to be diagonal in the computational basis |e〉,
with eigenvalue λ (e) = ON(e;G,H), where ON(e;G,H) is the objective function for
the classical optimization algorithm for r(G,H):

HP|e〉= ON(e;G,H)|e〉. (9)

Notice that the smallest eigenvalue (viz. ground-state energy) of HP will be zero iff
there exists a coloring e∗ with no red subgraph isomorphic to G or blue subgraph
isomorphic to H. The initial Hamiltonian Hi is chosen to be

Hi =−
L−1

∑
k=0

σ
k
x , (10)

where σ k
x acts like a NOT operator on the kth qubit,

σ
k
x |e0 · · ·ek · · ·eL−1〉= |e0 · · ·(ek⊕1) · · ·eL−1〉,

where ⊕ indicates binary addition. The ground-state of Hi is easily shown to be the
uniform superposition of L-qubit CBS.

As with the classical optimization algorithm for r(G,H), the adiabatic quan-
tum algorithm begins by setting the graph order N equal to a strict lower bound for
r(G,H), obtained using the probabilistic method, or a lower bound from the literature.
The AQO algorithm is run on LN =

(N
2

)
qubits, and at the end of the adiabatic evolu-

tion, the qubits are measured in the computational basis. The result is a binary string
e∗ of length LN . In the adiabatic limit (T →∞), the string e∗ will be an optimal string,
almost certainly, with ON(e;G,H) = 0 since N < r(G,H). The value of N is now in-
cremented N → N + 1, the AQO algorithm is re-run on LN+1 qubits, and the qubits
measured in the computational basis at the end of adiabatic evolution. This process
is repeated until the objective function value for the measured string is first positive.
When this first occurs, in the adiabatic limit, the current N value will be equal to
r(G,H), almost certainly. Note that any real application of AQO will only be approx-
imately adiabatic. Thus the probability that the measured string e∗ will be an optimal
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string is 1−ε . In this case, the algorithm must be run k∼O(ln[1−δ ]/ lnε) times so
that, with probability δ > 1−ε , at least one of the measurement outcomes will be an
optimal string. We can make δ arbitrarily close to 1 by choosing k sufficiently large.
This then gives an adiabatic quantum algorithm for computing generalized Ramsey
numbers.

4 Numerical results for r(Tm,Tn)

In this Section we numerically determine the generalized Ramsey numbers r(Tm,Tn)
associated with trees of order m,n = 6,7,8. These Ramsey numbers are of interest as
many are unknown, and only determined to within loose lower and upper bounds [4].
Ideally, these Ramsey numbers would be found by simulating the quantum dynamics
of the AQO algorithm presented in Section 3.2. However, the exponential growth of
Hilbert space dimension with number of qubits makes simulation of quantum sys-
tems with more than 20 qubits impracticable [11,13,14]. From Ref. [4], the Ramsey
numbers for 6-vertex trees satisfy 7≤ r(T6,T6)≤ 25. Thus simulating the AQO al-
gorithm at the lower bound is already impractical as this requires

(7
2

)
= 21 qubits. The

situation is even worse for the other tree Ramsey numbers listed above. However, the
classical optimization algorithm of Section 3.1 does allow us to determine these tree
Ramsey numbers, and as we shall see below, most of the tree Ramsey numbers found
are new.

In Section 4.1 we discuss the methodology and complexity of our numerical com-
putation. In the interests of clarity we limit our presentation of numerical results
in Section 4.2 to r(T6,T6); the remaining tree Ramsey numbers are presented in
Appendix B. Specifically, the Ramsey numbers r(T7,Tn) with n = 6,7 appear in
Section B.1; and r(T8,Tn) with 6 ≤ n ≤ 8 appear in Section B.2. Section 4.2 and
Appendix B.1 also present, for each input pair of GI classes, the number of non-
isomorphic critical graphs, and at the Ramsey threshold N = r(T i

m,T
j

n ), the number
of non-isomorphic optimal graphs and their associated minimum objective function
values.

4.1 Sources of complexity

The difficulty of calculating Ramsey numbers was noted in the Introduction, and the
above optimization algorithm does not evade this difficulty. Here we describe three
sources of exponential complexity which the COP contains, and discuss how they
impact the numerical work presented in Section 4.2 and Appendix B.

For a given coloring e of KN , the algorithm examines all choices of m-sets Sα and
n-sets Sβ . There are

(N
m

)
and

(N
n

)
such choices which, respectively, scale exponentially

with m and n. As m,n ≤ 8 in the numerical work presented in this paper, this source
of intractability proved managable.

The second source of intractability arises from the need to consider all possible
two-colorings of KN . There are 2(

N
2) such colorings which is super-exponential in N.

Note, however, that (two-)colorings of KN that are isomorphic to a given coloring e
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Table 1 The number of unlabelled (uN ) and labelled (lN ) colorings of KN [15].

N uN lN = 2(
N
2)

1 1 1
2 2 2
3 4 8
4 11 64
5 34 1024
6 156 32768
7 1044 2097152
8 12346 268435456
9 274668 68719476736
10 12005168 35184372088832
11 1018997864 36028797018963968
12 165091172592 73786976294838206464
13 50502031367952 302231454903657293676544
14 29054155657235488 2475880078570760549798248448

contain a red G or a blue H iff e does. Thus, when calculating r(G,H), we only need
to consider vertex-unlabelled colorings of KN . Since there are far fewer unlabelled
colorings of KN than labelled colorings (see Table 1), it was possible to exhaustively
examine all unlabelled colorings of KN for N ≤ 11. For a given N, the graph isomor-
phism algorithm NAUTY [16] was used to generate the unlabelled colorings of KN .
To go to larger N (viz. N ≥ 12), it was necessary to give up on exhaustive exami-
nation of colorings to find the objective function minimum, and instead work with
the heuristic algorithm Tabu search [17]. If, for a given N, Tabu search returned a
coloring e∗ with ON(e∗;G,H) = 0, then we know that e∗ does not contain a red G
or a blue H, and so r(G,H) > N. However, if the smallest objective value returned
by Tabu search is positive, we cannot rule out that Tabu search missed a coloring
with vanishing objective. In this case, absent further information, the most that can
be concluded is that r(G,H)≥ N. We return to this point in Appendix B.2.

The final source of exponential complexity arises when computing the look-up
tables for f [G∼= Kr

α(e)] and f [H ∼= Kb
β
(e)]. As discussed above, each choice Sα (Sβ )

of m (n) vertices gives rise to a subgraph Kr
α(e) (Kb

β
(e)) which must be examined to

see if it is isomorphic to G (H). A separate look-up table was used to store the values
of f [G∼= Kr

α(e)] and f [H ∼= Kb
β
(e)]. Naively, each table requires an entry for each of

the 2(
m
2) and 2(

n
2) possible Kr

α(e) and Kb
β
(e), respectively. When m and/or n equals 8,

this becomes unmanagable. The solution is again to store only unlabelled graphs in
the look-up tables for f [G∼= Kr

α(e)] and f [H ∼= Kb
β
(e)]. NAUTY was used to find all

unlabelled graphs G of order 8, and for each G , Eq. (1) and/or Eq. (4) was used to
evaluate f [G∼=G ] and/or f [H ∼=G ], depending upon whether m and/or n was equal to
8. Then, for a given coloring e of KN , to determine whether G∼= Kr

α(e) or H ∼= Kb
β
(e),

NAUTY was used to find the unlabelled graph isomorphic to Kr
α(e) (Kb

β
(e)), and the

look-up table value for the unlabelled graph used to determine whether G ∼= Kr
α(e)

(H ∼= Kb
β
(e)).
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Fig. 1 Graph isomorphism classes T j
6 ( j = 1, . . .6) for trees of order 6.

By combining all of the above mitigation procedures, we were able to handle
complete graphs KN with N ≤ 14, and graphs G and H corresponding to trees with
6≤ |VG|, |VH | ≤ 8.

4.2 Tree Ramsey numbers r(T6,T6)

Trees of order 6 partition into six GI classes [18] which we denote by {T j
6 : j =

1, . . .6}, and show as unlabelled graphs in Figure 1. All GI classes except T 3
6 corre-

spond to known unlabelled graphs (Section 2 and Appendix A):

T 1
6 = P6 = S(4)1,1; T 4

6 = S(2)1,3; T 6
6 = S(2)2,2.

T 2
6 = S(3)1,2; T 5

6 = K1,5;
(11)

Using the numerical procedure described in Section 4.1 we determined the tree Ram-
sey numbers r(T i

6 ,T
j

6 ) for i, j = 1, . . . ,6 which we displayed in Table 2 Only the
upper triangular table entries are shown as the lower triangular entries follow from
r(T j

6 ,T i
6 ) = r(T i

6 ,T
j

6 ). A superscript “x” on a table entry indicates that Theo-
rem A.x in Appendix A applies, and so these tree Ramsey numbers were known
prior to this work. The reader can verify that our numerical results are in agreement
with the theorems of Appendix A. The remaining 24 tree Ramsey numbers (to the
best of our knowledge) are new.

As explained in Section 4.1, for m,n = 6, and for graphs of order 7≤N ≤ 10, our
numerical procedure can exhaustively search over all non-isomorphic graphs, and so
can find the number of non-isomorphic optimal graphs and their associated objec-
tive function value. For graphs with order N = r(T i

6 ,T
j

6 )− 1, the optimal graphs
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Table 2 Numerical results for tree Ramsey numbers r(T i
6 ,T

j
6 ) with 1 ≤ i, j ≤ 6. Table rows (columns)

are labelled by i ( j). Only the upper triangular table entries are shown as the lower triangular entries
follow from r(T j

6 ,T i
6 ) = r(T i

6 ,T
j

6 ). A superscript “x” on a table entry indicates that Theorem A.x of
Appendix A applies, and so these tree Ramsey numbers were known prior to this work. The reader can
verify that our numerical results are in agreement with the theorems of Appendix A. The remaining 24 tree
Ramsey numbers (to the best of our knowledge) are new.

r(T i
6 ,T

j
6 )

i \ j 1 2 3 4 5 6

1 82,6 8 8 8 94 8
2 7 8 7 94 8
3 8 8 94 8
4 77 94 8
5 103 9
6 87

Table 3 Numerical results for the number of non-isomorphic critical graphs Nc(T i
6 ,T

j
6 ) with 1≤ i, j≤ 6.

Table rows (columns) are labelled by i ( j), and for table entry (i, j), the graph order is r(T i
6 ,T

j
6 )−1. Only

the upper triangular table entries are shown as the lower triangular entries follow from symmetry under
interchange of colors: Nc(T

j
6 ,T i

6 ) = Nc(T i
6 ,T

j
6 ).

Nc(T i
6 ,T

j
6 )

i \ j 1 2 3 4 5 6
1 4 2 4 2 1 3
2 8 2 9 1 1
3 4 2 1 3
4 14 6 1
5 16 1
6 2

are (T i
6 ,T

j
6 )-critical graphs (Section 2). Table 3 lists the number of non-isomorphic

critical graphs for each pairing of GI classes (T i
6 ,T

j
6 ). These graphs are all found to

have vanishing objective function value, which is expected, since critical graphs have
order N < r(T i

6 ,T
j

6 ).
At the Ramsey threshold, N = r(T i

6 ,T
j

6 ), optimal graphs first acquire a non-
vanishing objective function value (see Section 3.1). In Tables 4 and 5 we list, respec-
tively, the number of non-isomorphic optimal graphs for each pairing of GI classes
(T i

6 ,T
j

6 ) and the corresponding minimum objective function value.
As noted earlier, in the interests of clarity, we present the remainder of our tree

Ramsey number results in Appendix B.

5 Summary

In this paper we presented an adiabatic quantum algorithm for computing general-
ized Ramsey numbers. We showed how such a computation can be reformulated as
a combinatorial optimization problem whose solution is found using adiabatic quan-
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Table 4 Numerical results for the number of non-isomorphic optimal graphs Nopt(T i
6 ,T

j
6 ) with 1≤ i, j≤

6. Table rows (columns) are labelled by i ( j), and for table entry (i, j), the graph order is r(T i
6 ,T

j
6 ). Only

the upper triangular table entries are shown as the lower triangular entries follow from symmetry under
interchange of colors: Nopt(T

j
6 ,T i

6 ) = Nopt(T i
6 ,T

j
6 ).

Nopt(T i
6 ,T

j
6 )

i \ j 1 2 3 4 5 6
1 4 2 4 2 1 3
2 8 2 5 1 1
3 4 2 1 3
4 2 1 1
5 8 1
6 2

Table 5 Numerical results for the minimum objective function value ON(e∗;T i
6 ,T

j
6 ) at the Ramsey

threshold with 1≤ i, j ≤ 6. Table rows (columns) are labelled by i ( j), and for table entry (i, j), the graph
order is r(T i

6 ,T
j

6 ). Only the upper triangular table entries are shown as the lower triangular entries follow
from symmetry of the objective function under interchange of colors.

ON(e∗;T i
6 ,T

j
6 )

i \ j 1 2 3 4 5 6
1 1 1 1 1 4 1
2 1 1 1 4 1
3 1 1 4 1
4 1 4 1
5 5 4
6 1

tum optimization. We determined all generalized Ramsey numbers for trees of order
6-8, resulting in 1600 tree Ramsey numbers, of which (to the best of our knowledge)
1479 are new. All results are consistent with a conjectured upper bound on tree Ram-
sey numbers [24].
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A Tree Ramsey numbers - literature survey

In this Appendix we quote five theorems from the literature pertaining to generalized Ramsey numbers for
certain families of trees. These theorems: (i) allow us to identify which of our tree Ramsey numbers are
new; and (ii) provide checks on the remainder of our results. Section 2 provides a brief review of the graph
theory concepts needed in this paper.

Theorem 1 (Gerecsér and Gyárfás [19]) For paths Pm and Pn with 2≤ m≤ n,

r(Pm,Pn) = n+
⌊

m
2

⌋
−1.
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Theorem 2 (Harary [20]) For stars K1,m−1 and K1,n−1 with m,n≥ 2 and diameter 2,

r(K1,m−1,K1,n−1) =

{
m+n−3, odd m,n
m+n−2, otherwise.

Theorem 3 (Cockayne [21]) If Tm is a tree of order m containing a vertex of degree one adjacent to a
vertex of degree two, then r(Tm,K1,n−1) = m+n−3 (n≥ 2), provided one of the following holds:

(1) n−1≡ 0,2 mod (m−1) ;
(2) n−1 6≡ 1 mod (m−1) and n−1≥ (m−3)2;
(3) n−1 6≡ 1 mod (m−1) and n−1≡ 1 mod (m−2);
(4) n−1≡ m−2 mod (m−1) and n−1 > m−2.

The following definition proves convenient.

Definition 2 Suppose a,b≥ 1 and k ≥ 2. Then S(k)a,b is the graph obtained from the disjoint stars K1,a and
K1,b by joining their centers with a path of order k (viz. length k−1).

Thus the order of S(k)a,b is a+b+ k and the path Pn = S(n−2)
1,1 for n≥ 4.

Theorem 4 (Burr and Erdös [22]) Consider the graph S(4)a,b with a≥ b≥ 1 and diameter 5. Then

r(S(4)a,b,S
(4)
a,b) = max{2a+3,a+2b+5}.

Theorem 5 (Grossman, Harary, and Klawe [23]) Consider the graph S(2)a,b with a≥ b≥ 1 and diameter
3. Then

r(S(2)a,b,S
(2)
a,b)≥

{
max{2a+1,a+2b+2}, a odd,and b = 1,2
max{2a+2,a+2b+2}, otherwise.

Furthermore,

r(S(2)a,b,S
(2)
a,b) =

{
max{2a+1,a+2b+2}, a odd,and b = 1,2
max{2a+2,a+2b+2}, a even,or b≥ 3 provided a≤

√
2b or a≥ 3b.

B Remaining tree Ramsey numbers

In this Appendix we present our remaining tree Ramsey number results. Appendix B.1 contains our results
for r(T7,Tn) with n = 6,7; and Appendix B.2 contains r(T8,Tn) for n = 6,7,8. Appendix B.1 also
present, for each input pair of GI classes, the number of non-isomorphic critical graphs, and at the Ramsey
threshold N = r(T i

m,T
j

n ), the number of non-isomorphic optimal graphs and their associated minimum
objective function values.

B.1 Tree Ramsey numbers r(T7,Tn) for n = 6,7

Trees of order 7 partition into eleven GI classes [18] which we denote by {T j
7 : j = 1, . . .11}, and show

as unlabelled graphs in Figure 2. Seven of these GI classes correspond to known (unlabelled) graphs
(Section 2 and Appendix A):

T 1
7 = P7 = S(5)1,1; T 6

7 = S(3)3,1; T 10
7 = K1,6.

T 2
7 = S(4)2,1; T 8

7 = S(2)3,2;

T 5
7 = S(3)2,2; T 9

7 = S(2)4,1;

(12)
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Fig. 2 Graph isomorphism classes T j
7 ( j = 1, . . .11) for trees of order 7.

B.1.1 r(T i
7 ,T

j
6 )

Using our numerical procedure (Section 4.1) we determined the tree Ramsey numbers r(T i
7 ,T

j
6 ) for

1≤ i≤ 11 and 1≤ j ≤ 6 which are displayed in Table 6. A superscript “x” on a table entry indicates that
Theorem A.x of Appendix A applies, and so these tree Ramsey numbers were known prior to this work.
The reader can verify that our numerical results are in agreement with the theorems of Appendix A. The
remaining 64 tree Ramsey numbers (to the best of our knowledge) are new.

As explained in Section 4.1, for trees of order 6 and 7, and for graphs of order 8 ≤ N ≤ 11, our
numerical procedure can exhaustively search over all non-isomorphic graphs, and so can find the number
of non-isomorphic optimal graphs and their associated objective function value. For graphs with order
N = r(T i

6 ,T
j

6 )−1, the optimal graphs are (T i
7 ,T

j
6 )-critical graphs (Section 2). Table 7 lists the number of

non-isomorphic critical graphs for each pairing of GI classes (T i
7 ,T

j
6 ). These graphs are all found to have

vanishing objective function value, which is expected, since critical graphs have order N < r(T i
7 ,T

j
6 ).

At the Ramsey threshold, N = r(T i
7 ,T

j
6 ), optimal graphs first acquire a non-vanishing objective

function value (see Section 3.1). In Tables 8 and 9 we list, respectively, the number of non-isomorphic
optimal graphs for each pairing of GI classes (T i

7 ,T
j

6 ) and the corresponding minimum objective function
value.

B.1.2 r(T i
7 ,T

j
7 )

Using the numerical procedure described in Section 4.1, we determined the tree Ramsey numbers r(T i
7 ,T

j
7 )

for 1≤ i, j ≤ 11 which are displayed in Table 10. Only the upper triangular table entries are shown as the
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Table 6 Numerical results for tree Ramsey numbers r(T i
7 ,T

j
6 ) with 1 ≤ i ≤ 11 and 1 ≤ j ≤ 6. Table

rows (columns) are labelled by i ( j). A superscript “x” on a table entry indicates that Theorem A.x of
Appendix A applies, and so these tree Ramsey numbers were known prior to this work. The reader can
verify that our numerical results are in agreement with the theorems of Appendix A. The remaining 64 tree
Ramsey numbers (to the best of our knowledge) are new.

r(T i
7 ,T

j
6 )

i \ j 1 2 3 4 5 6

1 92 8 9 8 9 9
2 9 8 9 8 9 9
3 9 8 9 8 9 9
4 9 8 9 8 9 9
5 9 9 9 9 9 9
6 9 9 9 9 9 9
7 9 8 9 8 9 9
8 9 8 9 8 9 9
9 9 9 9 9 10 9

10 11 11 11 11 113 11
11 9 8 9 8 9 9

Table 7 Numerical results for the number of non-isomorphic (T i
7 ,T

j
6 )-critical graphs Nc(T i

7 ,T
j

6 ) with
1 ≤ i ≤ 11 and 1 ≤ j ≤ 6. Table rows (columns) are labelled by i ( j), and for table entry (i, j), the graph
order is r(T i

7 ,T
j

6 )−1.

Nc(T i
7 ,T

j
6 )

i \ j 1 2 3 4 5 6
1 2 8 2 5 1 1
2 2 6 2 3 1 1
3 2 6 2 3 1 1
4 2 6 2 3 1 1
5 3 1 3 1 6 2
6 3 1 3 1 10 2
7 2 6 2 3 7 1
8 2 5 2 5 8 1
9 3 1 3 6 16 2

10 1 1 1 1 60 1
11 2 9 2 7 3 1

lower triangular entries follow from r(T j
7 ,T i

7 ) = r(T i
7 ,T

j
7 ). A superscript “x” on a table entry indicates

that Theorem A.x in Appendix A applies, and so these tree Ramsey numbers were known prior to this
work. The reader can verify that our numerical results are in agreement with the theorems of Appendix A.
The remaining 102 tree Ramsey numbers (to the best of our knowledge) are new.

As explained in Section 4.1, for m,n= 7, and for graphs of order 9≤N ≤ 11, our numerical procedure
can exhaustively search over all non-isomorphic graphs, and so can find the number of non-isomorphic
optimal graphs and their associated objective function value. For graphs with order N = r(T i

7 ,T
j

7 )− 1,
the optimal graphs are (T i

7 ,T
j

7 )-critical graphs (Section 2). Table 11 lists the number of non-isomorphic
critical graphs for each pairing of GI classes (T i

7 ,T
j

7 ). These graphs are all found to have vanishing
objective function value, which is expected, since critical graphs have order N < r(T i

7 ,T
j

7 ).

At the Ramsey threshold, N = r(T i
7 ,T

j
7 ), optimal graphs first acquire a non-vanishing objective

function value (see Section 3.1). In Tables 12 and 13 we list, respectively, the number of non-isomorphic
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Table 8 Numerical results for the number of non-isomorphic optimal graphs Nopt(T i
7 ,T

j
6 ) with 1≤ i≤ 11

and 1 ≤ j ≤ 6. Table rows (columns) are labelled by i ( j), and for table entry (i, j), the graph order is
r(T i

7 ,T
j

6 ).

Nopt(T i
7 ,T

j
6 )

i \ j 1 2 3 4 5 6
1 2 8 2 5 1 1
2 2 6 2 3 1 1
3 2 6 2 3 1 1
4 2 6 2 3 1 1
5 2 1 2 1 1 1
6 2 1 2 1 1 1
7 2 6 2 3 1 1
8 2 5 2 2 1 1
9 2 1 2 1 1 1
10 1 1 1 1 1 1
11 2 8 2 5 1 1

Table 9 Numerical results for the minimum objective function value ON(e∗;T i
7 ,T

j
6 ) at the Ramsey

threshold with 1 ≤ i ≤ 11 and 1 ≤ j ≤ 6. Table rows (columns) are labelled by i ( j), and for table en-
try (i, j), the graph order is r(T i

7 ,T
j

6 ).

ON(e∗;T i
7 ,T

j
6 )

i \ j 1 2 3 4 5 6
1 1 1 1 1 4 1
2 1 1 1 1 4 1
3 1 1 1 1 4 1
4 1 1 1 1 4 1
5 1 6 1 6 4 1
6 1 6 1 6 4 1
7 1 1 1 1 4 1
8 1 1 1 1 4 1
9 1 6 1 6 5 1
10 6 6 6 6 6 6
11 1 1 1 1 4 1

optimal graphs for each pairing of GI classes (T i
7 ,T

j
7 ) and the corresponding minimum objective function

value.

B.2 r(T8,Tn) for n = 6,7,8

Trees of order 8 partition into twenty-three GI classes [18] which we denote by {T j
8 : j = 1, . . .23}, and

show as unlabelled graphs in Figure 3. Ten of these GI classes correspond to known (unlabelled) graphs
(Section 2 and Appendix A):

T 1
8 = K1,7; T 4

8 = S(2)4,2; T 9
8 = S(4)3,1; T 23

8 = P8 = S(6)1,1.

T 2
8 = S(2)5,1; T 5

8 = S(3)3,2; T 12
8 = S(4)2,2;

T 3
8 = S(3)4,1; T 6

8 = S(2)3,3; T 14
8 = S(5)2,1;

(13)
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Fig. 3 Graph isomorphism classes T j
8 ( j = 1, . . .23) for trees of order 8.
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Table 10 Numerical results for tree Ramsey numbers r(T i
7 ,T

j
7 ) with 1≤ i, j≤ 11. Table rows (columns)

are labelled by i ( j). Only the upper triangular table entries are shown as the lower triangular entries
follow from r(T j

7 ,T i
7 ) = r(T i

7 ,T
j

7 ). A superscript “x” on a table entry indicates that Theorem A.x of
Appendix A applies, and so these tree Ramsey numbers were known prior to this work. The reader can
verify that our numerical results are in agreement with the theorems of Appendix A. The remaining 102
tree Ramsey numbers (to the best of our knowledge) are new.

r(T i
7 ,T

j
7 )

i \ j 1 2 3 4 5 6 7 8 9 10 11

1 92 9 9 9 9 9 9 9 9 114 9
2 96 9 9 9 9 9 9 9 114 9
3 9 9 9 9 9 9 9 114 9
4 9 9 9 9 9 9 114 9
5 9 9 9 9 9 11 9
6 9 9 9 9 114 9
7 9 9 9 114 9
8 97 9 11 9
9 107 114 9

10 113 11
11 9

Table 11 Numerical results for the number of non-isomorphic critical graphs Nc(T i
7 ,T

j
7 ) with 1≤ i, j ≤

11. Table rows (columns) are labelled by i ( j), and for table entry (i, j), the graph order is r(T i
7 ,T

j
7 )−1.

Only the upper triangular table entries are shown as the lower triangular entries follow from symmetry
under interchange of colors: Nc(T

j
7 ,T i

7 ) = Nc(T i
7 ,T

j
7 ).

Nc(T i
7 ,T

j
7 )

i \ j 1 2 3 4 5 6 7 8 9 10 11
1 8 6 6 6 5 5 6 5 5 1 8
2 4 4 4 3 3 4 3 3 1 6
3 4 4 3 3 4 3 3 1 6
4 4 3 3 4 3 3 1 6
5 2 2 4 2 6 1 6
6 2 4 2 10 1 6
7 4 3 9 1 6
8 2 9 1 5
9 16 60 7
10 9638 1
11 8

B.2.1 r(T i
8 ,T

j
6 )

The numerical procedure described in Section 4.1 was used to determine the tree Ramsey numbers r(T i
8 ,T

j
6 )

for 1 ≤ i ≤ 23 and 1 ≤ j ≤ 6, and the results are displayed in Table 14. A superscript “x” on a table en-
try indicates that Theorem A.x of Appendix A applies, and so these tree Ramsey numbers were known
prior to this work. The reader can verify that our numerical results are in agreement with the theorems
of Appendix A. Recall from Section 4.1 that for graphs with order N ≥ 12, exhaustive search over non-
isomorphic graphs was not feasible. For such graphs we used the heuristic algorithm Tabu search to look
for minima of the tree Ramsey number objective function. As noted there, Tabu search only yields a lower
bound for a tree Ramsey number. However, because of Theorem A.3, we know that for r(T 1

8 ,T 5
6 ), the
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Table 12 Numerical results for the number of non-isomorphic optimal graphs Nopt(T i
7 ,T

j
7 ) with 1 ≤

i, j≤ 11. Table rows (columns) are labelled by i ( j), and for table entry (i, j), the graph order is r(T i
7 ,T

j
7 ).

Only the upper triangular table entries are shown as the lower triangular entries follow from symmetry
under interchange of colors: Nopt(T

j
7 ,T i

7 ) = Nopt(T i
7 ,T

j
7 ).

Nopt(T i
7 ,T

j
7 )

i \ j 1 2 3 4 5 6 7 8 9 10 11
1 8 6 6 6 4 4 6 5 4 1 8
2 4 4 4 2 2 4 3 2 1 6
3 4 4 2 2 4 3 2 1 6
4 4 2 2 4 3 2 1 6
5 2 2 2 1 6 1 4
6 2 2 1 6 1 4
7 4 3 2 1 6
8 2 1 1 5
9 22 1 4
10 7502 1
11 8

Table 13 Numerical results for the minimum objective function value ON(e∗;T i
7 ,T

j
7 ) at the Ramsey

threshold with 1≤ i, j ≤ 11. Table rows (columns) are labelled by i ( j), and for table entry (i, j), the graph
order is r(T i

7 ,T
j

7 ). Only the upper triangular table entries are shown as the lower triangular entries follow
from symmetry of the objective function under interchange of colors.

ON(e∗;T i
7 ,T

j
7 )

i \ j 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 5 1
2 1 1 1 1 1 1 1 1 5 1
3 1 1 1 1 1 1 1 5 1
4 1 1 1 1 1 1 5 1
5 6 6 1 1 6 5 1
6 6 1 1 6 5 1
7 1 1 1 5 1
8 1 1 5 1
9 20 5 1
10 1 5
11 1

value 12 is in fact the actual value of this Ramsey number. Thus no lower bounds appear in Table 14—all
values are actual Ramsey number values. Of the 138 tree Ramsey numbers appearing in Table 14, (to the
best of our knowledge) 132 are new.

B.2.2 r(T i
8 ,T

j
7 )

The numerical results for the tree Ramsey numbers r(T i
8 ,T

j
7 ) for 1 ≤ i ≤ 23 and 1 ≤ j ≤ 11 are shown

in Table 15. A superscript “x” on a table entry indicates that Theorem A.x of Appendix A applies, and
so these tree Ramsey numbers were known prior to this work. The reader can verify that our numerical
results are in agreement with the theorems of Appendix A. Recall from Section 4.1 that for graphs with
order N ≥ 12, exhaustive search over non-isomorphic graphs was not feasible. For such graphs we used
the heuristic algorithm Tabu search to look for minima of the tree Ramsey number objective function. As
noted there, Tabu search only yields a lower bound for a tree Ramsey number. Numbers in Table 15 marked
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Table 14 Numerical results for tree Ramsey numbers r(T i
8 ,T

j
6 ) with 1 ≤ i ≤ 23 and 1 ≤ j ≤ 6. Table

rows (columns) are labelled by i ( j). A superscript “x” on a table entry indicates that Theorem A.x of
Appendix A applies, and so these tree Ramsey numbers were known prior to this work. The reader can
verify that our numerical results are in agreement with the theorems of Appendix A. The remaining 132
tree Ramsey numbers (to the best of our knowledge) are new.

r(T i
8 ,T

j
6 )

i \ j 1 2 3 4 5 6

1 114 114 114 114 123 11
2 11 11 11 11 11 11
3 11 11 11 11 11 11
4 10 9 10 9 10 10
5 11 11 11 11 11 11
6 10 9 10 9 10 10
7 10 9 10 9 10 10
8 10 9 10 9 9 10
9 10 9 10 9 9 10

10 10 9 10 9 9 10
11 10 9 10 9 9 10
12 10 9 10 9 9 10
13 10 9 10 9 9 10
14 10 9 10 9 9 10
15 10 9 10 9 9 10
16 10 9 10 9 9 10
17 10 9 10 9 9 10
18 10 9 10 9 9 10
19 10 9 10 9 9 10
20 10 9 10 9 9 10
21 10 9 10 9 9 10
22 10 9 10 9 9 10
23 102 9 10 9 9 10

with an asterisk correspond to lower bounds on the associated tree Ramsey number. Of the 253 numbers
appearing in this Table, (to the best of our knowledge) 241 are new tree Ramsey numbers, 10 are lower
bounds, and 2 were previously known.

Before moving on we note that it has been conjectured [24] that r(Tm,Tn) ≤ n+m− 2 for all trees
Tm and Tn. For the trees in Table 15 the conjecture gives the upper bound r(T8,T7)≤ 13. The conjecture
is seen to be consistent with all entries in Table 15. Furthermore, if the conjecture is true, then all lower
bounds in row 1 become exact values since we would have 13≤ r(T 1

8 ,T j
7 )≤ 13.

B.2.3 r(T i
8 ,T

j
8 )

The numerical results for the tree Ramsey numbers r(T i
8 ,T

j
8 ) for 1 ≤ i, j ≤ 23 are shown in Table 16.

Only the upper triangular table entries are shown as the lower triangular entries follow from r(T j
8 ,T i

8 ) =

r(T i
8 ,T

j
8 ). A superscript “x” on a table entry indicates that Theorem A.x in Appendix A applies, and

so these tree Ramsey numbers were known prior to this work. The reader can verify that our numerical
results are in agreement with the theorems of Appendix A. Recall from Section 4.1 that for graphs with
order N ≥ 12, exhaustive search over non-isomorphic graphs was not feasible. For such graphs we used
the heuristic algorithm Tabu search to look for minima of the tree Ramsey number objective function.
As noted there, Tabu search only yields a lower bound for a tree Ramsey number. Numbers in Table 16
marked with an asterisk correspond to lower bounds on the associated tree Ramsey number. Of the 529
numbers appearing in this Table, (to the best of our knowledge) 479 are new tree Ramsey numbers, 10 are
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Table 15 Numerical results for tree Ramsey numbers r(T i
8 ,T

j
7 ) with 1 ≤ i ≤ 23 and 1 ≤ j ≤ 11. Table

rows (columns) are labelled by i ( j). A superscript “x” on a table entry indicates that Theorem A.x of
Appendix A applies, and so these tree Ramsey numbers were known prior to this work. The reader can
verify that our numerical results are in agreement with the theorems of Appendix A. Numbers marked by
an asterisk indicate that these numbers are lower bounds on the corresponding tree Ramsey number (see
text). The remaining 241 tree Ramsey numbers (to the best of our knowledge) are new.

r(T i
8 ,T

j
7 )

i \ j 1 2 3 4 5 6 7 8 9 10 11

1 13∗ 13∗ 13∗ 13∗ 13∗ 13∗ 13∗ 13∗ 13∗ 133 13∗

2 11 11 11 11 11 11 11 11 11 11 11
3 11 11 11 11 11 11 11 11 11 11 11
4 10 10 10 10 9 9 10 10 10 11 10
5 11 11 11 11 11 11 11 11 11 11 11
6 10 10 10 10 10 10 10 10 10 11 10
7 10 10 10 10 9 9 10 10 10 11 10
8 10 10 10 10 9 9 10 10 9 11 10
9 10 10 10 10 9 9 10 10 9 11 10

10 10 10 10 10 9 9 10 10 9 11 10
11 10 10 10 10 10 10 10 10 10 11 10
12 10 10 10 10 10 10 10 10 10 11 10
13 10 10 10 10 9 9 10 10 9 11 10
14 10 10 10 10 9 9 10 10 9 11 10
15 10 10 10 10 9 9 10 10 9 11 10
16 10 10 10 10 10 10 10 10 10 11 10
17 10 10 10 10 9 9 10 10 9 11 10
18 10 10 10 10 10 10 10 10 10 11 10
19 10 10 10 10 10 10 10 10 10 11 10
20 10 10 10 10 10 10 10 10 10 11 10
21 10 10 10 10 10 10 10 10 10 11 10
22 10 10 10 10 9 9 10 10 9 11 10
23 102 10 10 10 10 10 10 10 10 11 10

lower bounds, and 40 were previously known. The conjectured upper bound [24], r(Tm,Tn)≤ n+m−2,
evaluates to r(T8,T8)≤ 14 and is seen to be consistent with all entries in Table 16.
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