Skip to main content
Log in

Adiabatic passage for one-step generation of n-qubit Greenberger–Horne–Zeilinger states of superconducting qubits via quantum Zeno dynamics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An efficient scheme is proposed for generating n-qubit Greenberger–Horne–Zeilinger states of n superconducting qubits separated by (\(n-1\)) coplanar waveguide resonators capacitively via adiabatic passage with the help of quantum Zeno dynamics in one step. In the scheme, it is not necessary to precisely control the time of the whole operation and the Rabi frequencies of classical fields because of the introduction of adiabatic passage. The numerical simulations for three-qubit Greenberger–Horne–Zeilinger state show that the scheme is insensitive to the dissipation of the resonators and the energy relaxation of the superconducting qubits. The three-qubit Greenberger–Horne–Zeilinger state can be deterministically generated with comparatively high fidelity in the current experimental conditions, though the scheme is somewhat sensitive to the dephasing of superconducting qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  4. Vidal, G.: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  5. Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404 (2001)

    Article  ADS  Google Scholar 

  6. Chen, Y.H., Xia, Y., Song, J., Chen, Q.Q.: Shortcuts to adiabatic passage for fast generation of Greenberger–Horne–Zeilinger states by transitionless quantum driving. Sci. Rep. 5, 15616 (2015)

    Article  ADS  Google Scholar 

  7. Feng, W., Wang, P., Ding, X., Xu, L., Li, X.Q.: Generating and stabilizing the Greenberger–Horne–Zeilinger state in circuit QED: joint measurement, Zeno effect, and feedback. Phys. Rev. A 83, 042313 (2011)

    Article  ADS  Google Scholar 

  8. Yang, C.P.: Preparation of \(n\)-qubit Greenberger–Horne–Zeilinger entangled states in cavity QED: an approach with tolerance to nonidentical qubit-cavity coupling constants. Phys. Rev. A 83, 062302 (2011)

    Article  ADS  Google Scholar 

  9. Duan, L.M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)

    Article  ADS  Google Scholar 

  10. Huang, Y.F., Liu, B.H., Peng, L., Li, Y.H., Li, L., Li, C.F., Guo, G.C.: Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state. Nat. Commun. 2, 546 (2011)

    Article  ADS  Google Scholar 

  11. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Hänsel, W., Hennrich, M., Blatt, R.: 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  12. Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., Cross, A.W., Johnson, B.R., Masluk, N.A., Ryan, C.A., Smolin, J.A., Srinivasan, S.J., Steffen, M.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)

    Article  ADS  Google Scholar 

  13. Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.C., Mutus, J., Fowler, A.G., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Neill, C., O’Malley, P., Roushan, P., Vainsencher, A., Wenner, J., Korotkov, A.N., Cleland, A.N., Martinis, J.M.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature (London) 508, 500–503 (2014)

    Article  ADS  Google Scholar 

  14. Dogra, S., Dorai, K., Arvind.: Experimental construction of generic three-qubit states and their reconstruction from two-party reduced states on an NMR quantum information processor. Phys. Rev. A 91, 022312 (2015)

  15. Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)

    Article  ADS  MATH  Google Scholar 

  16. Pashkin, Y.A., Yamamoto, T., Astafiev, O., Nakamura, Y., Averin, D.V., Tsai, J.S.: Quantum oscillations in two coupled charge qubits. Nature (London) 421, 823–826 (2003)

    Article  ADS  MATH  Google Scholar 

  17. Yu, Y., Han, S., Chu, X., Chu, S.I., Wang, Z.: Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science 296, 889–892 (2002)

    Article  ADS  Google Scholar 

  18. Vion, D., Aassime, A., Cottet, A., Joyez, P., Pothier, H., Urbina, C., Esteve, D., Devoret, M.H.: Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002)

    Article  ADS  Google Scholar 

  19. Liu, Y.X., Wei, L.F., Nori, F.: Generation of nonclassical photon states using a superconducting qubit in a microcavity. Europhys. Lett. 67, 941–947 (2004)

    Article  ADS  Google Scholar 

  20. Song, K.H., Zhou, Z.W., Guo, G.C.: Quantum logic gate operation and entanglement with superconducting quantum interference devices in a cavity via a Raman transition. Phys. Rev. A 71, 052310 (2005)

    Article  ADS  Google Scholar 

  21. Deng, Z.J., Gao, K.L., Feng, M.: Generation of N-qubit W states with rf SQUID qubits by adiabatic passage. Phys. Rev. A 74, 064303 (2006)

    Article  ADS  Google Scholar 

  22. Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87, 022320 (2013)

    Article  ADS  Google Scholar 

  23. Liu, Q.G., Wu, Q.C., Leng, C.L., Liang, Y., Ji, X., Zhang, S.: Generation of atomic NOON states via adiabatic passage. Quantum Inf. Process. 13, 2801–2814 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Wei, X., Chen, M.F.: Preparation of multi-qubit W states in multiple resonators coupled by a superconducting qubit via adiabatic passage. Quantum Inf. Process. 14, 2419–2433 (2015)

    Article  ADS  MATH  Google Scholar 

  25. Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R.C., Lucero, E., Neeley, M., O’Connell, A.D., Sank, D., Wenner, J., Martinis, J.M., Cleland, A.N.: Synthesizing arbitrary quantum states in a superconducting resonator. Nature (London) 459, 546–549 (2009)

    Article  ADS  Google Scholar 

  26. DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., Chow, J.M., Gambetta, J.M., Frunzio, L., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature (London) 467, 574–578 (2010)

    Article  ADS  Google Scholar 

  27. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–1025 (1998)

    Article  ADS  Google Scholar 

  28. Král, P., Thanopulos, I., Shapiro, M.: Colloquium: coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53–77 (2007)

    Article  ADS  Google Scholar 

  29. Hao, S.Y., Xia, Y., Song, J., An, N.B.: One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage. J. Opt. Soc. Am. B 30, 468–474 (2013)

    Article  ADS  Google Scholar 

  30. Shao, X.Q., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Deterministic generation of arbitrary multiatom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage. Europhys. Lett. 90, 50003 (2010)

    Article  ADS  Google Scholar 

  31. Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Inf. Process. 12, 411–424 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wu, Q.C., Wang, Y., Ji, X.: Preparation of three-qubit decoherence-free state via quantum Zeno dynamics. Quantum Inf. Process. 12, 2121–2130 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Chen, Y.H., Xia, Y., Song, J.: Deterministic generation of singlet states for N-atoms in coupled cavities via quantum Zeno dynamics. Quantum Inf. Process. 13, 1857–1877 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Liang, Y., Su, S.L., Wu, Q.C., Ji, X., Zhang, S.: Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics. Opt. Express 23, 5064–5077 (2015)

    Article  ADS  Google Scholar 

  35. Chen, M.F., Chen, Y.F., Ma, S.S.: One-step implementation of a Toffoli gate of separated superconducting qubits via quantum Zeno dynamics. Quantum Inf. Process. 15, 1469–1483 (2016)

  36. Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys. Conf. Ser. 196, 012017 (2009)

    Article  ADS  MATH  Google Scholar 

  38. Vitanov, N.V., Suominen, K.A., Shore, B.W.: Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage. J. Phys. B 32, 4535–4546 (1999)

    Article  ADS  Google Scholar 

  39. Yang, C.P., Su, Q.P., Han, S.: Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A 86, 022329 (2012)

    Article  ADS  Google Scholar 

  40. Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Yeon, K.H.: One-step implementation of the Toffoli gate via quantum Zeno dynamics. Phys. Lett. A 374, 28–33 (2009)

    Article  ADS  MATH  Google Scholar 

  41. Feng, Z.B., Zhang, X.D.: Holonomic quantum computation with superconducting charge-phase qubits in a cavity. Phys. Lett. A 372, 1589–1594 (2008)

    Article  ADS  MATH  Google Scholar 

  42. Zahedinejad, E., Ghosh, J., Sanders, B.C.: High-fidelity single-shot Toffoli gate via quantum control. Phys. Rev. Lett. 114, 200502 (2015)

    Article  ADS  Google Scholar 

  43. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623–653 (2013)

    Article  ADS  Google Scholar 

  44. Paik, H., Schuster, D.I., Bishop, L.S., Kirchmair, G., Catelani, G., Sears, A.P., Johnson, B.R., Reagor, M.J., Frunzio, L., Glazman, L.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)

    Article  ADS  Google Scholar 

  45. Rigetti, C., Gambetta, J.M., Poletto, S., Plourde, B.L.T., Chow, J.M., Córcoles, A.D., Smolin, J.A., Merkel, S.T., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B., Steffen, M.: Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506 (2012)

    Article  ADS  Google Scholar 

  46. Makhlin, Y., Shnirman, A.: Dephasing of solid-state qubits at optimal points. Phys. Rev. Lett. 92, 178301 (2004)

    Article  ADS  Google Scholar 

  47. Cywiński, Ł., Lutchyn, R.M., Nave, C.P., Sarma, S.D.: How to enhance dephasing time in superconducting qubits. Phys. Rev. B 77, 174509 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11464046 and 61465013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JL., Song, C., Xu, J. et al. Adiabatic passage for one-step generation of n-qubit Greenberger–Horne–Zeilinger states of superconducting qubits via quantum Zeno dynamics. Quantum Inf Process 15, 3663–3675 (2016). https://doi.org/10.1007/s11128-016-1366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1366-0

Keywords

Navigation