Skip to main content
Log in

Physical synthesis of quantum circuits using templates

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of “physical synthesis” was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Multiplexed ion trap architecture builder.

References

  1. Markov, I.L.: Limits on fundamental limits to computation. Nature 512, 147–154 (2014)

    Article  ADS  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge university press, Cambridge (2010)

    Book  MATH  Google Scholar 

  3. Marinescu, D.C., Marinescu, G.M.: Approaching Quantum Computing. Prentice Hall, New Jersey (2005)

    MATH  Google Scholar 

  4. O’Brien, J.L.: Quantum computing. Front. Opt. 1, FTu2A (2015)

    Google Scholar 

  5. Spiller, T.P., Munro, W.J., Barrett, S.D., Kok, P.: An introduction to quantum information processing: applications and realizations. Contemp. Phys. 46, 407–436 (2005)

    Article  ADS  Google Scholar 

  6. Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for designing CNOT-based quantum circuits. In: Proceedings of the 39th Annual Design Automation Conference, pp. 419–424 (2002)

  7. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, 2003. Proceedings, pp. 318–323 (2003)

  8. Mohammadzadeh, N., Sedighi, M., Zamani, M.S.: Quantum physical synthesis: improving physical design by netlist modifications. Microelectron. J. 41, 219–230 (2010)

    Article  Google Scholar 

  9. Häffner, H., Roos, C.F.: Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. Leibrandt, D.R., Labaziewicz, J., Clark, R.J., Chuang, I.L., Epstein, R.J., Ospelkaus, C., et al.: Demonstration of a scalable, multiplexed ion trap for quantum information processing. Quantum Inf. Comput. 9, 901–919 (2009)

    Google Scholar 

  11. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    Article  ADS  Google Scholar 

  12. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  13. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  14. Wineland, D.J., Monroe, C., Itano, W., Leibfried, D., King, B., Meekhof, D.: Experimental issues in coherent quantum-state manipulation of trapped atomic ions. arxiv:quant-ph/9710025 (1997)

  15. Kim, J., Pau, S., Ma, Z., McLellan, H., Gates, J., Kornblit, A., et al.: System design for large-scale ion trap quantum information processor. Quantum Inf. Comput. 5, 515–537 (2005)

    MATH  Google Scholar 

  16. Hensinger, W., Olmschenk, S., Stick, D., Hucul, D., Yeo, M., Acton, M., et al.: T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation. Appl. Phys. Lett. 88, 034101 (2006)

    Article  ADS  Google Scholar 

  17. Whitney, M.G., Isailovic, N., Patel, Y., Kubiatowicz, J.: A fault tolerant, area efficient architecture for Shor’s factoring algorithm. ACM SIGARCH Comput. Archit. News 37, 383–394 (2009)

    Article  Google Scholar 

  18. Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T., Chuang, I.L.: A quantum logic array microarchitecture: scalable quantum data movement and computation. In: Proceedings of 38th Annual IEEE/ACM International Symposium on Microarchitecture, 2005, MICRO-38, p. 12 (2005)

  19. Isailovic, N., Whitney, M., Patel, Y., Kubiatowicz, J.: Running a quantum circuit at the speed of data. ACM SIGARCH Comput. Archit. News 36, 177–188 (2008)

    Article  Google Scholar 

  20. Shende, V.V., Prasad, A.K., Patel, K.N., Markov, I.L., Hayes, J.P.: Scalable simplification of reversible circuits. In: Proceedings of the 12th International Workshop on Logic and Synthesis (IWLS’03), (2003)

  21. Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with templates. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 807–817 (2005)

    Article  Google Scholar 

  22. Maslov, D., Dueck, G.W., Miller, D.M.: Synthesis of Fredkin-Toffoli reversible networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13, 765–769 (2005)

    Article  Google Scholar 

  23. Maslov, D., Dueck, G.W., Miller, D.M.: Fredkin/Toffoli templates for reversible logic synthesis. In: Proceedings of the 2003 IEEE/ACM international conference on Computer-aided design, p. 256 (2003)

  24. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 12, 42 (2007)

    Article  Google Scholar 

  25. Maslov, D., Dueck, G., Miller, D.M.: Simplification of Toffoli networks via templates. Proceedings of 16th Symposium on In: Integrated Circuits and Systems Design, 2003, SBCCI 2003, pp. 53–58 (2003)

  26. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10, 355–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: Design Automation Conference (ASP-DAC), 2010 15th Asia and South Pacific, pp. 849–854 (2010)

  28. Soeken, M., Wille, R., Dueck, G.W., Drechsler, R.: Window optimization of reversible and quantum circuits. In: 2010 IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 341–345 (2010)

  29. Abdessaied, N., Soeken, M., Wille, R., Drechsler, R.: Exact template matching using Boolean satisfiability. In: 2013 IEEE 43rd International Symposium on Multiple-Valued Logic (ISMVL), pp. 328–333 (2013)

  30. Rahman, M. M., Dueck, G. W.: Properties of quantum templates. In: Glück, R., Yokoyama, T. (eds.) Reversible Computation, pp. 125–137. Springer, Heidelberg (2013)

  31. Balensiefer, S., Kreger-Stickles, L., Oskin, M.: QUALE: quantum architecture layout evaluator. In: Proceedings of SPIE, the International Society for Optical Engineering, pp. 103–114 (2005)

  32. Balensiefer, S., Kregor-Stickles, L., Oskin, M.: An evaluation framework and instruction set architecture for ion-trap based quantum micro-architectures. ACM SIGARCH Comput. Archit. News 33, 186–196 (2005)

    Article  Google Scholar 

  33. Whitney, M., Isailovic, N., Patel, Y., Kubiatowicz, J.: Automated generation of layout and control for quantum circuits. In: Proceedings of the 4th International Conference on Computing Frontiers, pp. 83–94 (2007)

  34. Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T., Chuang, I.L.: Scheduling physical operations in a quantum information processor. In: Defense and Security Symposium, pp. 62440T–62440T-12 (2006)

  35. Dousti, M.J. Pedram, M.: Minimizing the latency of quantum circuits during mapping to the ion-trap circuit fabric. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 840–843 (2012)

  36. Goudarzi, H., Dousti, M.J., Shafaei, A., Pedram, M.: Design of a universal logic block for fault-tolerant realization of any logic operation in trapped-ion quantum circuits. Quantum Inf. Process. 13, 1267–1299 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Yazdani, M., Zamani, M.S., Sedighi, M.: A quantum physical design flow using ILP and graph drawing. Quantum Inf. Process. 12, 3239–3264 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Toolkit, G.D.: An object-oriented library for handling and drawing graphs. http://www.dia.uniroma3.it/~gdt/gdt4/index.php

  39. Mohammadzadeh, N., Bahreini, T., Badri, H.: Optimal ILP-based approach for gate location assignment and scheduling in quantum circuits. Model. Simul. Eng. 2014, 7 (2014)

    Google Scholar 

  40. Bahreini, T., Mohammadzadeh, N.: An MINLP model for scheduling and placement of quantum circuits with a heuristic solution approach. ACM J. Emerg. Technol. Comput. Syst. (JETC) 12, 29 (2015)

    Google Scholar 

  41. Mohammadzadeh, N., Sedighi, M., Zamani, M.S.: Gate location changing: an optimization technique for quantum circuits. Int. J. Quantum Inf. 10, 1250037 (2012)

    Article  Google Scholar 

  42. Ahsan, M., Van Meter, R., Kim, J.: Designing a million-qubit quantum computer using resource performance simulator. ACM J. Emerg. Technol. Comput. Syst. (JETC) 12, 39 (2016)

    Google Scholar 

  43. Ahsan, M., Kim, J.: Optimization of quantum computer architecture using a resource-performance simulator. In: Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, pp. 1108–1113 (2015)

  44. Monroe, C., Raussendorf, R., Ruthven, A., Brown, K., Maunz, P., Duan, L.-M., et al.: Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014)

    Article  ADS  Google Scholar 

  45. Juvan, M., Mohar, B.: Optimal linear labelings and eigenvalues of graphs. Discrete Appl. Math. 36, 153–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mohammadzadeh, N., Zamani, M.S., Sedighi, M.: Auxiliary qubit selection: a physical synthesis technique for quantum circuits. Quantum Inf. Process. 10, 139–154 (2011)

    Article  MathSciNet  Google Scholar 

  47. Mohammadzadeh, N., Zamani, M.S., Sedighi, M.: Quantum circuit physical design methodology with emphasis on physical synthesis. Quantum Inf. Process. 13, 445–465 (2014)

    Article  MATH  Google Scholar 

  48. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27, 436–444 (2008)

    Article  Google Scholar 

  49. Mohammadzadeh, N., Taqavi, E.: Quantum circuit physical design flow for the multiplexed trap architecture. Microprocess. Microsyst. (2016). http://www.sciencedirect.com/science/article/pii/S0141933116300047

  50. Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design: From Graph Partitioning to Timing Closure. Springer, New York (2011)

    Book  MATH  Google Scholar 

  51. Maslov, D., Dueck, G., Scott, N.: Reversible logic synthesis benchmarks page. http://www.cs.uvic.ca/~dmaslov (2005)

  52. Lin, C.-C., Chakrabarti, A., Jha, N.K.: FTQLS: Fault-tolerant quantum logic synthesis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22, 1350–1363 (2014)

    Article  Google Scholar 

  53. Brooks, S.P., Morgan, B.J.: Optimization using simulated annealing. Statistician, 44, 241–257 (1995)

Download references

Acknowledgments

We would like to thank Prof. Wineland and Prof. Kubiatowicz for their invaluable deliberations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Mohammadzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirkhani, Z., Mohammadzadeh, N. Physical synthesis of quantum circuits using templates. Quantum Inf Process 15, 4117–4135 (2016). https://doi.org/10.1007/s11128-016-1377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1377-x

Keywords

Navigation