Skip to main content
Log in

High-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an approach that achieves high-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. In particular, we encode a key with the Chebyshev-map values corresponding to Lucas numbers and then use k-Chebyshev maps to achieve consecutive and flexible key expansion and apply the pre-shared classical information between Alice and Bob and fountain codes for privacy amplification to solve the security of the exchange of classical information via the classical channel. Consequently, our high-capacity protocol does not have the limitations imposed by orbital angular momentum and down-conversion bandwidths, and it meets the requirements for longer distances and lower error rates simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nikolopoulos, G.M., Ranade, K.S., Alber, G.: Error tolerance of two-basis quantum key-distribution protocols using qudits and two-way classical communication. Phys. Rev. A 73, 032325 (2006)

    Article  ADS  Google Scholar 

  2. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002)

    Article  ADS  Google Scholar 

  3. Zhang, L., Silberhorn, C., Walmsley, I.A.: Secure quantum key distribution using continuous variables of single photons. Phys. Rev. Lett 100(11), 110504 (2008)

    Article  ADS  Google Scholar 

  4. Bechmann-Pasquinucci, H., Tittel, W.: Quantum cryptography using larger alphabets. Phys. Rev. A 61(6), 062308 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett 84(20), 4737 (2000)

    Article  ADS  Google Scholar 

  6. Kwiat, P.G., Steinberg, A.M., Chiao, R.Y.: High-visibility interference in a Bell-inequality experiment for energy and time. Phys. Rev. A 47, 2472 (1993)

    Article  ADS  Google Scholar 

  7. Brendel, J., Gisin, N., Tittel, W., Zbinden, H.: Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett 82, 2594 (1999)

    Article  ADS  Google Scholar 

  8. Gibson, G., Courtial, J., Padgett, M.J., Vasnetsov, M., Pas’ko, V., Barnett, S.M., Franke-Arnold, S.: Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004)

    Article  ADS  Google Scholar 

  9. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  10. Mair, A., Vaziri, A., Weihs, G., Zeilinger, A.: Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)

    Article  ADS  Google Scholar 

  11. Molina-Terriza, G., Torres, J.P., Torner, L.: Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 013601 (2001)

    Article  ADS  Google Scholar 

  12. Simon, D.S., Lawrence, N., Trevino, J., DalNegro, L., Sergienko, A.V.: High-capacity quantum Fibonacci coding for key distribution. Phys. Rev. A 87, 032312 (2013)

    Article  ADS  Google Scholar 

  13. Chen, L., Lei, J., Romero, J.: Quantum digital spiral imaging. Light Sci. Appl. 3(3), e153 (2014)

    Article  Google Scholar 

  14. Lei, T., Zhang, M., Li, Y., et al.: Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 4(3), e257 (2015)

    Article  Google Scholar 

  15. Mi, S., Wang, T., Jin, G., et al.: High-capacity quantum secure direct communication with orbital angular momentum of photons. IEEE Photonics J. 7(5), 1–8 (2015)

    Article  Google Scholar 

  16. Hu, J.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  17. Karimi, E., Schulz, S.A., De Leon, I., et al.: Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3(5), e167 (2014)

    Article  Google Scholar 

  18. Tischler, N., Fernandez-Corbaton, I., Zambrana-Puyalto, X., et al.: Experimental control of optical helicity in nanophotonics. Light Sci. Appl. 3(6), e183 (2014)

    Article  Google Scholar 

  19. Zhou, Z., Li, Y., Ding, D., et al.: Orbital angular momentum photonic quantum interface. Light Sci. Appl. 5(1), e16019 (2016)

    Article  Google Scholar 

  20. Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.P., Capasso, F., Gaburro, Z.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011)

    Article  ADS  Google Scholar 

  21. Dal Negro, L., Lawrence, N., Trevino, J.: Analytical light scattering and orbital angular momentum spectra of arbitrary Vogel spirals. Opt. Express 20(16), 18209–18223 (2012)

    Article  ADS  Google Scholar 

  22. Romero, J., Giovannini, D., Franke-Arnold, S., Barnett, S.M., Padgett, M.J.: Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement. Phys. Rev. A 86, 012334 (2012)

    Article  ADS  Google Scholar 

  23. Fickler, R., Lapkiewicz, R., Plick, W.N., Krenn, M., Schaeff, C., Ramelow, S., Zeilinger, A.: Quantum entanglement of high angular momenta. Science 338, 640 (2012)

    Article  ADS  Google Scholar 

  24. Buschman, R.G.: http://www.fq.math.ca/Scanned/1-4/buschman-a. Last accessed 27 Nov 2014

  25. Lupo, C., Lloyd, S.: Quantum-locked key distribution at nearly the classical capacity rate. Phys. Rev. Lett. 113, 160502 (2014)

    Article  ADS  Google Scholar 

  26. Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weisstein, E.W.: Lucas number. http://mathworld.wolfram.com/LucasNumber.html. Last accessed 27 Nov 2014

  28. Tseng, H., Jan, R., Yang, W.: A chaotic maps-based key agreement protocol that preserves user anonymity. In: IEEE International Conference on Communications, ICC2009, Dresden, Germany, pp. 1–6 (2009)

  29. Kohda, T., Tsuneda, A.: Pseudonoise sequences by chaotic nonlinear maps and their correlation properties. IEICE Trans. Commun. E76-B, 855–862 (1993)

  30. Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach to reliable distribution of bulk data. In: Steenstrup, M. (ed.) Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM ’98), pp. 56–67. ACM, New York

  31. Lai, H., Orgun, M.A., Pieprzyk, J., Xiao, J.H., Xue, L,Y., Jia, Z.T.: Controllable quantum private queries using an entangled Fibonacci-sequence spiral source. Phys. Lett. A 379, 2561–2568 (2015)

  32. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod Phys. 74, 145–190 (2002)

    Article  ADS  Google Scholar 

  33. Guha, S., Hayden, P., Krovi, H., Lloyd, S., Lupo, C., Shapiro, J.H.: Quantum enigma machines and the locking capacity of a quantum channel. Phys. Rev. X 4, 011016 (2014)

    Google Scholar 

Download references

Acknowledgments

Hong Lai has been supported by the Fundamental Research Funds for the Central Universities (No. XDJK2016C043) and the Doctoral Program of Higher Education (No. SWU115091). Josef Pieprzyk has been supported by National Science Centre, Poland, Project Registration Number UMO-2014/15/B/ST6/05130. Fuyuan Xiao is supported by the Fundamental Research Funds for the Central Universities (No. XDJK2015C107) and the Doctoral Program of Higher Education (No. SWU115008). Jinghua Xiao is supported by the National Natural Science Foundation of China (No. 61377067). Mingxing Luo is supported by the National Natural Science Foundation of China (No. 61303039). The paper is also supported by the financial support in part by the 1000-Plan of Chongqing by Southwest University (No. SWU116007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Lai or Mehmet A. Orgun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, H., Orgun, M.A., Pieprzyk, J. et al. High-capacity quantum key distribution using Chebyshev-map values corresponding to Lucas numbers coding. Quantum Inf Process 15, 4663–4679 (2016). https://doi.org/10.1007/s11128-016-1420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1420-y

Keywords

Navigation