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We propose a deterministic remote state preparation (RSP) scheme for preparing an arbitrary
(including pure and mixed) qubit, where a partially entangled state and finite classical communi-
cation are used. To our knowledge, our scheme is the first RSP scheme that fits into this category.
One other RSP scheme proposed by Berry shares close features, but can only be used to prepare
an arbitrary pure qubit. Even so, our scheme saves classical communication by approximate 1 bit
per prepared qubit under equal conditions. When using a maximally entangled state, the classical
communication for our scheme is 2 bits, which agrees with Lo’s conjecture on the resource cost. Fur-
thermore Alice can switch between our RSP scheme and a standard teleportation scheme without
letting Bob know, which makes the quantum channel multipurpose.

PACS numbers: 03.65.Ud, 03.67.-a, 03.67.Hk

I. INTRODUCTION

Relying on quantum entanglement [1], quantum com-
munication protocols can present abilities that are un-
achievable by their classical counterparts. One notable
example is quantum teleportation [2]. Using two entan-
gled qubits and 2 bits of classical communication as re-
sources, teleportation enables Alice to transmit an un-
known qubit state to Bob without physically transporting
it. A variation of teleportation is remote state prepara-
tion (RSP) [3–7], wherein Alice produces a known qubit
state at Bob’s location by using entanglement and classi-
cal communication. Depending on the resource require-
ment, preparable state ensemble, and even successful
rate, different kind of RSP scheme has been devised for
carrying out the specific task.

In most RSP schemes, maximal entanglement, often-
est a Bell state, is assumed to be accessible. For exam-
ple, the first RSP scheme proposed by Pati [4] uses a
Bell state, realizing deterministic preparation of a qubit
from a fixed great circle on the Bloch sphere. Other later
proposed schemes extended the preparable ensembles to
varying degrees for preparing more general qubits, like
deterministic preparations of arbitrary pure qubits [8–
10], probabilistic preparations of arbitrary qubits [10, 11],
and more resently, schemes for deterministic preparations
of arbitrary qubits were also implemented [12, 13]. Un-
fortunately, these mentioned schemes are unadaptable to
partially entangled resource states, which may occur in
the real world. To devise RSP schemes that work with
partial entanglement, new ways must be found.

Although it is more difficult to devise RSP schemes em-
ploying partial entanglement, Ye et al. [14] proved that,
at the expense of increased classical communication, it
is possible to use a partially entangled state to perform
deterministic RSP of an arbitrary pure state. Based on
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the proof, Berry [15] proposed an explicit scheme for per-
forming such an RSP. Thus the two-dimensional case of
Berry’s scheme provides a complete technique for prepar-
ing an arbitrary pure qubit. In Ref. [16], we also proposed
an optimization procedure that can be incorporated into
Berry’s scheme to reduce unnecessary classical communi-
cation. Despite all these efforts, to our best knowledge,
as yet there is no deterministic RSP scheme that use par-
tial entanglement to prepare arbitrary (include pure and
mixed) qubit states, which we reported here.

In Sec. II, by utilizing the ensembles that can be pre-
pared using partial entanglement with only two bits of
classical communication, we give our RSP scheme which
trades off classical communication against entanglement
to implement the preparation of an arbitrary qubit. Our
results agree with Lo’s conjecture on the resource cost for
deterministic RSP. At the end of Sec. II we briefly sum-
marize our scheme, and show Alice can switch between
this RSP and a standard teleportation without letting
Bob know. In Sec III, we introduce a geometrical tool
called Voronoi diagram for the calculation of the classical
communication requirement for our scheme. The calcula-
tion shows our scheme saves approximate 1 bit of classical
communication when compared with Berry’s scheme for
the preparation of an arbitrary pure qubit. The under-
lying cause of the resource saving will be explained. In
Sec. IV, we draw our conclusions.

II. DETERMINISTIC REMOTE PREPARATION
OF AN ARBITRARY QUBIT

In this section, we present a remote state preparation
(RSP) scheme for Alice to prepare an arbitrary qubit
state at Bob’s location deterministically. The resources
for performing this task are a partially entangled two-
qubit state and finite bits of classical communication
from Alice to Bob. The qubit to be prepared is known to
Alice but unknown to Bob. Furthermore, we restrict the
scheme to be oblivious, where the state to be prepared is
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known to Alice but unknown to Bob.
The initial setup of our RSP scheme is as follows. As-

sume Alice and Bob have shared an entangled resource
state in the form

|r〉 = r0 |00〉AB + r1 |11〉AB ,

or, equivalently,

|r〉 = cos
θr
2
|00〉AB + sin

θr
2
|11〉AB , (1)

where 0 ≤ r1 ≤ r0 and 0 ≤ θr ≤ π. Any entangled
pure two-qubit state can be brought to this form via local
unitary operations. The entanglement of |r〉 is quantified
by the Von Neumann entropy of either of |r〉’s reduced
states, namely,

E(|r〉) = −r20 log r20 − r21 log r21. (2)

The scheme starts by a positive operator valued measure-
ment (POVM) on Alice’s system A. The measurement
operators given by{

Mm = pm

(
1

r0
|0〉 〈0|+ 1

r1
|1〉 〈1|

)
ρTm

.

(
1

r0
|0〉 〈0|+ 1

r1
|1〉 〈1|

)}3

m=0

, (3)

where the superscript T denotes the transposition, and
the values of pm and ρm are to be determined later.
By implementing this POVM, Alice obtains a mea-
surement outcome m with probability calculated as
〈r|Mm |r〉 = pm, and the corresponding state of Bob’s
post-measurement system will be trA (Mm |r〉 〈r|) /pm =
ρm. Then, based on the obtained measurement result
m, Alice instructs Bob to apply a corresponding unitary
operation Um on his system by sending him 2 bits. The
unitary operation Um is chosen from {I,σ3,σ1,− σ3σ1},
which is a unitary opertation set duplicated purposely
from a standard teleportation scheme, as we will discuss
at the end of the section. Also, in order to transform
Bob’s system to a state deterministically, we make a con-
vention that all UmρmU

†
m are equal.

Now, based on the above setup, we give the preparable
ensemble of pure qubits in Theorem 1. This ensemble will
be generalized to include mixed qubits by Corollary. 1.1.

Theorem 1. Using a preshared resource state |r〉 given
by Eq. (1) and 2 bits of classical communication from
Alice to Bob, any pure qubit from the ensemble{
|i(θi, φi)〉 = cos

θi
2
|0〉+ eiφi sin

θi
2
|1〉
∣∣∣∣ φi ∈ [0, 2π)

and θi ∈ [0, θr] ∪ [π − θr, π]

}
can be remotely prepared. Particularly if |r〉 is a maximal
entangled state, the above ensemble is represented by the
entire Bloch sphere consisting of every pure qubit.

Proof. Assume the pure qubit that Alice wants to prepare
is expressed as

|i〉 = cos
θi
2
|0〉+ eiφi sin

θi
2
|1〉 ≡ i0 |0〉+ eiφii1 |1〉 ,

0 ≤ θi ≤ π, 0 ≤ φi < 2π.

Here θi and φi are the polar and azimuthal angles of |i〉
in the Bloch sphere representation. For Bob, before he
receives the 2 classical bits from Alice, his system is in
the state

4∑
m=1

pmρm = r20 |0〉 〈0|+ r21 |1〉 〈1| . (4)

Substitute ρm ≡ U†m |i〉 〈i|Um with Um ∈
{I,σ3,σ1,− σ3σ1} into Eq. (4), we obtain(

i20P1 + i21P2

)
|0〉 〈0|+

(
i20P2 + i21P1

)
|1〉 〈1|

= r20 |0〉 〈0|+ r21 |1〉 〈1| , (5)

where P1 ≡ 2p0 = 2p1 and P2 ≡ 2p2 = 2p3. Moreover,
for a legitimate POVM in Eq. (3), P1, P2 ≥ 0 and P1 +
P2 = 1 are implied. Eq. (5) can be used as the necessary
and sufficient condition for checking the preparablity of
a pure qubit |i〉 (also see Eq. (3) in Ref. [14]). It is easy
to see, as long as r0 ≤ max {i0, i1}, Eq. (5) is soluble
for non-negative P1, P2 with P1 + P2 = 1. Except for
r0 = i0 = 1√

2
, where P1 can be any value in [0, 1], the

universal solution to Eq. (5) is

P1 =
(
r20 − i20

)
/2

(
1

2
− i20

)
. (6)

For consistency, we only use the universal solution in the
follow discussion.

On the Bloch sphere, the ensemble of states that sat-
isfies r0 ≤ max {i0, i1} is represented by an antipodal
pair of spherical caps with θi ∈ [0, θr] ∪ [π − θr, π].
Particularly when |r〉 is maximally entangled, we have
θi ∈ [0, π/2] ∪ [π/2, π], which means the ensemble is rep-
resented by the entire Bloch sphere consisting of every
pure qubit.

A mixed qubit describes a two-dimensional quantum
system whose state is not completely known. One can
suppose such a system is in a pure qubit state |i〉 with
probability p and in the maximally mixed qubit state
with probability 1 − p. The density matrix for such a
mixed qubit can be expressed as

ρi(p, θi, φi) = p |i(θi, φi)〉 〈i(θi, φi)|+ (1− p)I
2
,

where

|i(θi, φi)〉 = cos
θi
2
|0〉+ eiφi sin

θi
2
|1〉 .

Here p, θi and φi uniquely identify the Bloch vector
ri = (p sin θi cosφi, p sin θi sinφi, p cos θi) which is related
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to the position of ρi in the Bloch ball. When p = 1, ρi
degenerates into a pure qubit |i〉, while from the pure |i〉
to the mixed ρi, the Bloch vector shrinks by a factor p.
One can verify, if Alice sends Bob totally random classi-
cal bits (00, 01, 10 or 11 each with probability 1/4), Bob’
s system will end up with the maximally mixed qubit rep-
resented by the density matrix I/2. Therefore, if Alice
wants to remotely prepare ρi, she only needs to replace
the bits used for preparing |i〉 by totally random bits
with probability 1− p. Obviously we have the following
corollary.

Corollary 1.1. Using a preshared resource state |r〉
given by Eq. (1) and 2 bits of classical communication
from Alice to Bob, any qubit state from the ensemble{

ρi(p, θi, φi) = p |i(θi, φi)〉 〈i(θi, φi)|+ (1− p)I
2

∣∣∣∣
p ∈ [0, 1], φi ∈ [0, 2π) and θi ∈ [0, θr] ∪ [π − θr, π]

}
can be remotely prepared. Particularly if |r〉 is maximally
entangled, the above ensemble is represented by the entire
Bloch ball consisting of every pure and mixed qubit.

Lo [3] conjectured that, with unlimited entanglement
resource, deterministic preparation of an arbitrary pure
qubit at Bob’s location requires 2 bits of classical com-
munication. Bennet et al. [5] have proved in a more re-
stricted condition, where Bob is restricted to perform a
unitary operation and is oblivious to the prepared state,
the RSP must use at least 2 bits of classical communica-
tion. Our setup meets this condition, because when |r〉
is maximally entangled we have P1 = 1/2 from Eq. (6),
which means Bob cannot extract from the classical com-
munication any information about the prepared state
(thus is oblivious). Now, by treating Theorem 1 and
Corollary 1.1 as complements to Bennet et al.’s proof, we
know 2 bits of classical communication are both necessary
and sufficient (even for preparing an arbitrary qubit).

Due to the strictly increasing relation between θr and
E(|r〉), a less entangled |r〉 will lead to smaller preparable
ensembles in Theorem 1 and Corollary 1.1. In the follow-
ing discussion, we show how to trade off classical commu-
nication for reduced entanglement to enable preparation
of an arbitrary target qubit ρt.

We use C1 to denote the spherical cap lying at the
north pole mentioned in Theorem 1, and C−1 the antipo-
dal one. The pair of C1 and C−1 is denoted by C1,−1.
The size of C1,−1 can be directly measured by the pa-
rameter θr. If |r〉 is partially entangled, then C1,−1 will
not cover the entire Bloch sphere. In order to prepare a
target state ρt with Bloch vector rt outside the convex
hull of C1,−1, Alice and Bob need to proceed as follows.
First, before the preparation begins, they need to deter-

mine a K-element rotation operation set {Rj}Kj=1 that

is dependant on |r〉. Then, Alice deliberately prepares
the intermediate state ρi = R−1j ρtRj , whose Bloch vec-
tor is inside the convex hull of C1,−1. By sending Bob

logK bits, Alice instructs him to use Rj from {Rj}Kj=1

to transforms his system into ρt.
The effect of a rotation operation on a state is to ro-

tate the state’s Bloch vector by a fixed angle about some
axis of the Bloch ball. Let’s suppose each Rj maps the
spherical cap C1 to Cj (and thus C−1 to C−j). Although
the position of Cj,−j may vary, all of them are the same

size as C1,−1 and the union of {Cj,−j}Kj=1 must cover the

entire Bloch sphere. As pointed out earlier, if E(|r〉) is
reduced, the size of Cj,−j will decrease too. This gener-
ally results in an increased classical communication cost
as K tends to become larger to ensure total coverage.
The resource trade-off is inevitable for an RSP scheme of
this type, but making {Cj,−j}Kj=1 uniformly distributed

can avoid overcommunication. The problem of how to

uniformly distribute {Cj,−j}Kj=1 can be rephrased as how

to construct uniformly distributed 2K points with an-
tipodal symmetry on the Bloch sphere, for we can use
these points as the spherical caps’ centers. The points
construction method we use has been put into Appendix.

Now we summarize our scheme for remote preparation
of an arbitrary qubit ρt as the two-stage procedure below.

Stage 1. Using the POVM (3) and the unitary op-
erations I, σ3, σ1, − σ3σ1 to prepare an intermediate
state ρi = R−1j ρtRj that belongs to the ensemble given
in Corollary 1.1. The classical communication cost here
is 2 bits. If |r〉 is maximally entangled, by setting

{Rj}Kj=1 ≡ {I}, ρt can be prepared within this stage.

Stage 2. If |r〉 is non-maximally entangled, Bob per-

forms Rj from the predefined set {Rj}Kj=1 to transform

ρi to ρt. The classical communication cost in this stage
is logK bits, which is traded off against E(|r〉).

Different from RSP, teleportation can only be carried
out when a maximally entangled resource state is avail-
able [2]. In a standard teleportation scheme, where a
Bell state |Φ+〉 ≡ 1√

2
|00〉+ 1√

2
|11〉 is used, Bob needs to

apply a unitary operation chosen from {I,σ3,σ1,− σ3σ1}
after he receives the outcome of Alice’s Bell basis mea-
surement. The same unitary operation set is used in our
RSP scheme. As we have said, this choice is made on
purpose, because one can see when |r〉 is maximally en-
tangled, i.e., |r〉 = |Φ+〉, regardless of the target state the
probability that Bob uses any one of these unitary oper-
ations in both schemes is always 1/4. There is no chance
for Bob to tell which scheme is being performed, Alice
can switch between teleportation and RSP unilaterally.

III. CLASSICAL COMMUNICATION COST

The total classical communication cost for our scheme
is 2 + logK bits. For a given K, the entanglement of the
resource state |r〉 cannot below a certain lower bound,
otherwise there always exist some unpreparable qubit
states for our scheme. To calculate the lower bound of
E(|r〉), we need to make use of a geometry tool called
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FIG. 1. Voronoi diagram generated from uniformly dis-
tributed 64 points with antipodal symmetry on the Bloch
sphere. The mesh on the sphere shows the Voronoi cells cor-
responding to thses points. The green segment is the longest
site-vertex geodesic line. To cover the entire Bloch sphere,
every Cj must be no smaller than the green area.

Voronoi diagram. A Voronoi diagram is a partition of
a space into regions based on distance to some specific
points called sites. For each site, the corresponding re-
gion, called Voronoi cell, consists all points closer to this
site than to any other. All Voronoi cells are polygon-
shaped with edges equidistant from two sites and vertices
equidistant from three or more sites. Fig. 1 gives an illus-
tration of the Voronoi diagram generated from uniformly
distributed 64 (K = 32) points with antipodal symmetry.

If we treat the centers of Cj , j = ±1, ...,±K as sites
denoted by sj , a Voronoi diagram can be generated. The
necessary and sufficient condition for the union of all Cj ’s
to cover the entire Bloch sphere is that every Cj covers
the Voronoi cell corresponding to sj . We denotes by vj,k
the kth vertex of the Voronoi cell based on sj . After
obtaining the coordinates of all vi,j numerically by com-
puter [17], the lower bound of E(|r〉) can be calculated
from Eq. (2) and

max
{

arccos(vj,k · sj)
∣∣ for all valid (j, k)

}
≤ θr.

Using the point sets from Appendix, the results for K =
2n, n = 1, 2, ..., 10 are both listed in Table I and ploted
in Fig. 2.

An earlier RSP scheme proposed by Berry [15] can be
used for preparing arbitrary pure qubits. We find it also
fits into our two-stage procedure summarized in Sec. II,
just by replacing mixed ρi and ρt with pure |i〉 and |t〉, re-
spectively. The main difference is, in Berry’s scheme, the
intermediate state ensemble is represented by the spher-
ical cap on Bloch sphere given by{

|i〉 = cos
θi
2
|0〉+ eiφi sin

θi
2
|1〉
∣∣∣∣ θi ∈ [0, θr]

}
,

which is only half-size of the intermediate state ensemble
in the Theorem 1. So two classical bits of communica-
tion will not be sufficient for Berry’s scheme for preparing

Total classical bits cost

Low
er
bound

ofE
(|r〉)

1 3 4 5 6 7 8 9 10 11 12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.

FIG. 2. The total classical bits cost versus the lower bound
of E(|r〉) for RSP of general qubits. The circles represent
the required resource in the RSP scheme proposed in this
paper for preparing an arbitrary (including pure and mixed)
qubit. The squres represent the result of Berry’s scheme (after
optimization) for preparing an arbitrary pure qubit based on
the data from Ref. [16].

an arbitrary pure qubit, even when the resource state
is maximally entangled. The double-sized intermediate
state ensemble in our scheme reduces the number of el-
ements in devising the unitary operation set {Rj}Kj=1 to

nearly half and eventually cut down the total classical
communication cost by approximate 1 bit per pure qubit.
The approximation is caused by the different symmetries
employed in constructing uniformly distributed spherical
caps in these two schemes. In Fig. 2, we include the result
from [16] for comparison.

IV. CONCLUSIONS

We have proposed an RSP scheme for remotely prepar-
ing a general qubit by using any pure entangled state and
finite classical bits. Our scheme can be treated as a two-
stage procedure. If a maximally entangled resource state
is available, the target qubit can be directly prepared
in the first stage with 2 bits of classical communication,
which agrees with Lo’s conjecture on the resource cost
for deterministic RSP. If the resource state is only par-
tially entangled, an additional rotation operation will be
performed in the second stage to transform the interme-
diate state prepared in the first stage to the final target
state. The total classical communication cost is shown
to be traded off against the resource state’s entangle-
ment. To the best of our knowledge, our scheme is the
first deterministic RSP scheme for preparing an arbitrary
qubit using a partially entangled state and finite classi-
cal communication. Theoretically, Our technique can be
generalized to a higher dimension, but the geometry of
qudits (d > 2) may be hard to deal with.

Our scheme also shares the same unitary operation
set with the standard teleportation scheme. The ben-
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K 2 4 8 16 32 64 128 256 512 1024

Total bits
cost

3 4 5 6 7 8 9 10 11 12

Lower bound
of E(|r〉) 1 0.744008 0.502988 0.236295 0.155618 0.094967 0.056478 0.033252 0.018274 0.010069

TABLE I. For K with a value no more than 128, we use the optimal point sets as input in calculation, while when K =
256, 512, 1024 we use Koay’s point sets (see Appendix).

efit is when the resource state |r〉 is maximally entan-
gled, Alice can switch between teleportation and RSP
without letting Bob know, because no matter in which
scheme Bob always performs a unitary operation Um ∈
{I,σ3,σ1,− σ3σ1} with probability 1/4. This feature can
make an entangled channel more versatile without sacri-
ficing flexibility.
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APPENDIX: UNIFORM DISTRIBUTION OF
ANTIPODALLY SYMMETRIC POINTS ON THE

UNIT SPHERE

On a sphere, point sets with antipodal symmetry have
special importance in both scientific and engineering
fields, many works has been published for generating such
sets. The methods for generating a 2K-element set with
antipodal symmetry usually contain a minimization pro-

cedure of electrostatic potential energy. For the number
of elements within a few hundreds, the point sets are tab-
ulated online [18]. However, for the number of points in
these point sets beyond a few hundreds, the optimization
procedure will become unwieldy. To solve this problem,
we can use instead some constructive methods to gener-
ate nearly uniform point sets with antipodal symmetry,
which give very close results especially when K is large.
In this work for generating antipodally symmetric point
sets with K > 256 , we use a simple deterministic points
construction scheme proposed by Koay [19]. For the unit
sphere, the spherical coordinates (1, θi, φi,j) of the points
on the upper hemisphere is given by:

θi = (i− 1

2
)
π

[N ]
, i = 1, 2, ..., [N ],

φi,j = (j − 1

2
)
2π

Ki
, j = 1, 2, ...,Ki.

where N is the solution to N = K
2 sin π

4N , [·] is the func-
tion which gives the integer closest to the input, and

Ki =

{[
2π sin θi
π csc π

4[N]
K
]
, i = 1, 2, ..., [N ]− 1,

K −
∑[N ]−1
i=1 Ki, i = [N ].
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