Skip to main content
Log in

Joint remote preparation of arbitrary two- and three-photon state with linear-optical elements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, two schemes for joint remote preparation via linear optics elements are proposed. Firstly, we propose a scheme for joint remote preparation of an arbitrary two-photon state via linear-optical elements by using a five-qubit cluster state as the quantum channel. Then, the JRSP protocol of an arbitrary three-photon state via linear-optical elements, which was rarely considered in previous papers, is investigated. All the senders share the information of prepared state. The senders transform the quantum channel to the target quantum channel according to their information of prepared state, and the receiver can prepare the original state by performing corresponding operations on his entangled particles. Our scheme has advantage of transmitting less particles for joint remote preparing an arbitrary two-qubit state. Moreover, it is more convenience in application since it only requires linear-optical elements for joint remote preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Liu, X.S., Long, G.L., Tong, D.M., et al.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  3. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4(4), 282 (2008)

    Article  Google Scholar 

  4. Liu, D.: Controlled dense coding with six-particle nonmaximal graph state. Int. J. Theor. Phys. 54(8), 2748 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68(4), 042315 (2003)

    Article  ADS  Google Scholar 

  8. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  9. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  ADS  Google Scholar 

  11. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A 39(45), 14089 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  15. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time-pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  16. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  17. Bouda, J., Buzek, V.: Entanglement swapping between multi-qudit systems. J. Phys. A 34(20), 4301 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822 (1998)

    Article  ADS  Google Scholar 

  19. Takeda, S., Fuwa, M., van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114(10), 100501 (2015)

    Article  ADS  Google Scholar 

  20. Jin, R.B., Takeoka, M., Takagi, U., Shimizu, R., Sasaki, M.: Highly efficient entanglement swapping and teleportation at telecom wavelength. Sci. Rep. (2015). doi:10.1038/srep09333

    Google Scholar 

  21. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997)

    Article  ADS  Google Scholar 

  23. Chen, Y.A., Chen, S., Yuan, Z.S., Zhao, B., Chuu, C.S., Schmiedmayer, J., Pan, J.W.: Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4(2), 103 (2008)

    Article  Google Scholar 

  24. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323(5913), 486 (2009)

    Article  ADS  Google Scholar 

  25. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93(1), 012307 (2016)

    Article  ADS  Google Scholar 

  26. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. Deng, F.G., Li, C.Y., Li, Y.S., et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)

    Article  ADS  Google Scholar 

  29. Long, L.R., Li, H.W., Zhou, P., Fan, C., Yin, C.L.: Multiparty-controlled teleportation of an arbitrary GHZ- class state by using a d-dimensional (N+2)- particle nonmaximally entangled state as the quantum channel. Sci. China Ser. G Phys. Mech. Astron. 54(3), 484 (2011)

    Article  ADS  Google Scholar 

  30. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996)

    Article  ADS  Google Scholar 

  31. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77(13), 2818 (1996)

    Article  ADS  Google Scholar 

  32. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81(3), 032307 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044305 (2010)

    Article  ADS  Google Scholar 

  34. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044304 (2010)

    Article  ADS  Google Scholar 

  35. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(6), 062316 (2011)

    Article  ADS  Google Scholar 

  36. Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11(8), 085203 (2014)

    Article  ADS  Google Scholar 

  37. Wang, C., Zhang, Y., Jin, G.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84(3), 032307 (2011)

    Article  ADS  Google Scholar 

  38. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85(4), 042302 (2012)

    Article  ADS  Google Scholar 

  39. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser. Phys. Lett. 10(11), 115201 (2013)

    Article  ADS  Google Scholar 

  40. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90(5), 052309 (2014)

    Article  ADS  Google Scholar 

  41. Wang, C., Zhang, Y., Jin, G.S.: Polarization-entanglement purification and concentration using cross-Kerr nonlinearity. Quantum Inf. Comput. 11(11–12), 988 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Li, X.H., Ghose, S.: Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity. Opt. Express 23(3), 3550 (2015)

    Article  ADS  Google Scholar 

  43. Li, T., Deng, F.G.: Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission. Sci. Rep. 5, 15610 (2015)

    Article  ADS  Google Scholar 

  44. Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Express 23(7), 9284 (2015)

    Article  ADS  Google Scholar 

  45. Shor, P.W.: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, p. 124 (1994)

  46. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110(19), 190501 (2013)

    Article  ADS  Google Scholar 

  47. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    ADS  Google Scholar 

  48. Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91(3), 032328 (2015)

    Article  ADS  Google Scholar 

  49. Li, C.Y., Zhang, Z.R., Sun, S.H., Jiang, M.S., Liang, L.M.: Logic-qubit controlled-NOT gate of decoherence-free subspace with nonlinear quantum optics. J. Opt. Soc. Am. B 30(7), 1872 (2013)

    Article  ADS  Google Scholar 

  50. Huelga, S.F., Vaccaro, J.A., Chefles, A., Plenio, M.B.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63(4), 042303 (2001)

    Article  ADS  MATH  Google Scholar 

  51. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65(4), 042316 (2002)

    Article  ADS  Google Scholar 

  52. Zhang, Y.S., Ye, M.Y., Guo, G.C.: Conditions for optimal construction of two-qubit nonlocal gates. Phys. Rev. A 71(6), 062331 (2005)

    Article  ADS  Google Scholar 

  53. Xing, H., Liu, Y.M., Xie, C.M., Ji, Q.B., Zhan, Z.J.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13(7), 1553 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. He, Y.H., Lu, Q.C., Liao, Y.M., Qin, X.C., Qin, J.S., Zhou, P.: Bidirectional controlled remote implementation of an arbitrary single qubit unitary operation with EPR and cluster states. Int. J. Theor. Phys. 54(5), 1726 (2015)

    Article  MATH  Google Scholar 

  55. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000)

    Article  ADS  Google Scholar 

  56. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  57. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  58. Peng, X.H., Zhu, X.W., Fang, X.M., et al.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306(5), 271 (2003)

    Article  ADS  Google Scholar 

  59. Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76(2), 022308 (2007)

    Article  ADS  Google Scholar 

  60. Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81(4), 042301 (2010)

    Article  ADS  Google Scholar 

  61. Yan, F.L., Zhang, G.H.: Remote preparation of the two-particle state. Int. J. Quantum Inf. 6(03), 485 (2008)

    Article  MATH  Google Scholar 

  62. Wang, D., Hu, Y.D., Wang, Z.Q., et al.: Efficient and faithful remote preparation of arbitrary three-and four-particle W-class entangled states. Quantum Inf. Process. 14(6), 2135 (2015)

    Article  ADS  MATH  Google Scholar 

  63. Wang, D., Hoehn, R.D., Ye, L., et al.: Efficient and faithful remote preparation of arbitrary three-and four-particle W-class entangled states. Entropy 17(4), 1755 (2015)

    Article  ADS  Google Scholar 

  64. Wang, D., Huang, A.J., Sun, W.Y., et al.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. (2016). doi:10.1007/s11128-016-1346-4

    MathSciNet  MATH  Google Scholar 

  65. Nguyen, B.A.: Joint remote preparation of a general two-qubit state. J Phys. B 42(12), 125501 (2009)

    Article  Google Scholar 

  66. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796 (2010)

    Article  ADS  Google Scholar 

  67. Xiao, X.Q., Liu, J.M., Zeng, G.: Joint remote state preparation of arbitrary two-and three-qubit states. J Phys. B 44(7), 075501 (2011)

    Article  ADS  Google Scholar 

  68. Xia, Y., Chen, Q.Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein-Podolsky-Rosen pairs with a passive receiver. J Phys. A 45(33), 335306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  69. Chen, Q.Q., Xia, Y.: Joint remote preparation of an arbitrary two-qubit state via a generalized seven-qubit brown state. Laser Phys. 26(1), 015203 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  70. Wang, D., Zha, X.W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284(24), 5853 (2011)

    Article  ADS  Google Scholar 

  71. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. J Phys. A 12(7), 2325 (2013)

    MathSciNet  MATH  Google Scholar 

  72. Wang, Y., Ji, X.: Deterministic joint remote state preparation of arbitrary two-and three-qubit states. Chin. Phys. B 22(2), 020306 (2013)

    Article  ADS  Google Scholar 

  73. Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12(2), 997 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12(7), 2325 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Li, H.N., Ping, Y., Pan, X.Q., et al.: Joint remote preparation of an arbitrary three-qubit state with mixed resources. Int. J. Theor. Phys. 52(12), 4265 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  76. Chen, N., Quan, X.D., Xu, F.F., et al.: Deterministic joint remote state preparation of arbitrary single- and two-qubit states. Chin. Phys. B 24(10), 100307 (2015)

    Article  ADS  Google Scholar 

  77. Wang, Z.Y., Liu, Y.M., Zou, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52(2), 235 (2009)

    Article  ADS  MATH  Google Scholar 

  78. Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11(6), 1653 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Liao, Y.M., Qin, X.C., He, Y.H., et al.: Controlled remote preparing of an arbitrary 2-qudit state with two-particle entanglements and positive operator-valued measure. Commun. Theor. Phys. 61(3), 315 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14(3), 1077 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12(10), 3223 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Chen, N., Quan, D.X., Yang, H., et al.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15(4), 1719 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Zhang, D., Zha, X.W., Duan, Y.J., et al.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Fan, Q.B.: Remote preparation of photon polarization states within a network. Chin. Phys. Lett. 25(1), 20 (2008)

    Article  ADS  Google Scholar 

  85. Xia, Y., Song, J., Song, H.S., Guo, J.L.: Multiparty remote state preparation with linear optical elements. Int. J. Quantum Inf. 6(05), 1127 (2008)

    Article  MATH  Google Scholar 

  86. Xia, Y., Song, J., Ning, Y., Lu, P.M., Song, H.S.: Remote preparation of N photon GHZ polarization entangled states within a network. JETP lett. 90(11), 735 (2010)

    Article  ADS  Google Scholar 

  87. Lu, Q.C., Liu, D.P., He, Y.H., et al.: Linear-optics-based bidirectional controlled remote state preparation via five-photon cluster-type states for quantum communication network. Int. J. Theor. Phys. 55(1), 535 (2016)

    Article  MATH  Google Scholar 

  88. Xia, Y., Song, J., Lu, P.M., et al.: Controlled teleportation of a multi-photon GHZ polarization-entangled state using linear optical elements. Eur. Phys. J. D 61(2), 493 (2011)

    Article  ADS  Google Scholar 

  89. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88(1), 012302 (2013)

    Article  ADS  Google Scholar 

  90. Li, T., Deng, F.G.: Linear-optics-based entanglement concentration of four-photon \(\chi \)-type states for quantum communication network. Int. J. Theor. Phys. 53(9), 3026 (2014)

    Article  MATH  Google Scholar 

  91. Liao, Y.M., Zhou, P., Qin, X.C., et al.: Efficient joint remote preparation of an arbitrary two-qubit state via cluster and cluster-type states. Quantum Inf. Process. 13(3), 615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11564004 and 61501129, Natural Science Foundation of Guangxi under Grant No. 2014GXNSFAA118008, Special Funds of Guangxi Distinguished Experts Construction Engineering and Xiangsihu Young Scholars and Innovative Research Team of GXUN (Min-Da 2015-13-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, RF., Lin, YJ. & Zhou, P. Joint remote preparation of arbitrary two- and three-photon state with linear-optical elements. Quantum Inf Process 15, 4785–4803 (2016). https://doi.org/10.1007/s11128-016-1424-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1424-7

Keywords

Navigation