Skip to main content
Log in

Two-photon phase gate with linear optical elements and atom–cavity system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a protocol for implementing \(\pi \) phase gate of two photons with linear optical elements and an atom–cavity system. The evolution of the atom–cavity system is based on the quantum Zeno dynamics. The devices in the present protocol are simple and feasible with current experimental technology. Moreover, the method we proposed here is deterministic with a high fidelity. Numerical simulation shows that the evolution in cavity is efficient and robust. Therefore, the protocol may be helpful for quantum computation field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gorbachev, V.N., Trubilko, A.I., Rodichkina, A.A., Zhiliba, A.I.: Can the states of the W-class be suitable for teleportation. Phys. Lett. A 314, 267 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Liu, X.S., Long, G.L., Tong, D.M., Feng, L.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459 (2006)

    Article  ADS  Google Scholar 

  6. Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)

    Article  ADS  Google Scholar 

  7. Shor, P.W.: Algorithms for quantum computing: discrete log and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, vol. 124. IEEE Computer Society Press, Los Alamitos, CA (1994)

  8. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xu, H., Zhu, J., Lu, D., Zhou, X., Peng, X., Du, J.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108, 130501 (2012)

    Article  ADS  Google Scholar 

  10. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  11. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  13. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809 (2004)

    Article  ADS  Google Scholar 

  16. Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344 (1998)

    Article  ADS  Google Scholar 

  17. Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941 (2004)

    Article  ADS  Google Scholar 

  18. Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)

    Article  ADS  Google Scholar 

  19. Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  20. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  21. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 212 (2014)

    Google Scholar 

  22. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 2241 (2013)

    Google Scholar 

  23. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)

    Article  ADS  Google Scholar 

  24. Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)

    Article  ADS  Google Scholar 

  25. Wu, H.Z., Yang, Z.B., Zheng, S.B.: Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade. Phys. Rev. A 82, 034307 (2010)

    Article  ADS  Google Scholar 

  26. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91, 012325 (2015)

    Article  ADS  Google Scholar 

  27. Chudzicki, C., Chuang, I.L., Shapiro, J.H.: Deterministic and cascadable conditional phase gate for photonic qubits. Phys. Rev. A 87, 042325 (2013)

    Article  ADS  Google Scholar 

  28. Brod, D.J., Combes, J.: A passive CPHASE gate via cross-Kerr nonlinearities. arXiv:1604.04278 (2016)

  29. Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)

    Article  ADS  Google Scholar 

  30. McKeever, J., Buck, J.R., Boozer, A.D., Kuzmich, A., Nägerl, H.C., Stamper-Kurn, D.M., Kimble, H.J.: State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003)

    Article  ADS  Google Scholar 

  31. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87 (2005)

    Article  ADS  Google Scholar 

  32. Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295 (1990)

    Article  ADS  Google Scholar 

  33. Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys. Conf. Ser. 196, 012017 (2009)

    Article  ADS  MATH  Google Scholar 

  36. Facchi, P., Pascazio, S., Scardicchio, A., Schulman, L.S.: Zeno dynamics yields ordinary constraints. Phys. Rev. A 65, 012108 (2001)

    Article  ADS  Google Scholar 

  37. Facchi, P., Pascazioand, S.: Quantum Zeno and inverse quantum Zeno effects, chap.3. In: Wolf, E. (ed.) Progress in Optics, vol. 42, p. 147. Elsevier, Amsterdam (2001)

  38. Li, W.A., Huang, G.Y.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83, 022322 (2011)

    Article  ADS  Google Scholar 

  39. Chen, Y.H., Xia, Y., Song, J.: Deterministic generation of singlet states for N-atoms in coupled cavities via quantum Zeno dynamics. Quantum Inf. Process. 13, 1857 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Luis, A.: Quantum-state preparation and control via the Zeno effect. Phys. Rev. A 63, 052112 (2001)

    Article  ADS  Google Scholar 

  41. Shao, X.Q., Chen, L., Zhang, S., Yeon, K.H.: Fast CNOT gate via quantum Zeno dynamics. J. Phys. B At. Mol. Opt. Phys. 42, 165507 (2009)

    Article  ADS  Google Scholar 

  42. Kimble, H.J.: The quantum internet. Nature (London) 453, 1023 (2008)

    Article  ADS  Google Scholar 

  43. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  44. Sheng, Y.B., Deng, F.G.: Efficient quantum entanglement distribution over an arbitrary collective-noise channel. Phys. Rev. A 81, 042332 (2010)

    Article  ADS  Google Scholar 

  45. Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)

    Article  ADS  Google Scholar 

  46. Kang, Y.H., Xia, Y., Lu, P.M.: Efficient preparation of Greenberger–Horne–Zeilinger state and W state of atoms with the help of the controlled phase flip gates in quantum nodes connected by collective-noise channels. J. Mod. Opt. 62, 449 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. Spillane, S.M., Kippenberg, T.J., Vahala, K.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)

    Article  ADS  Google Scholar 

  48. Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849 (2006)

    Article  Google Scholar 

  49. Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806 (2003)

    Article  ADS  Google Scholar 

  50. Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287 (1985)

    Article  ADS  Google Scholar 

  51. Zou, X.B., Zhang, S.L., Li, K., Guo, G.C.: Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors. Phys. Rev. A 75, 034302 (2007)

    Article  ADS  Google Scholar 

  52. Song, J., Xia, Y., Song, H.S., Guo, J.L., Nie, J.: Quantum computation and entangled-state generation through adiabatic evolution in two distant cavities. Euro. Phys. Lett. 80, 60001 (2007)

  53. Eibl, M., Bourennane, M., Kurtsiefer, C., Weinfurter, H.: Experimental realization of a three-qubit entangled W state. Phys. Rev. Lett. 92, 077901 (2004)

    Article  ADS  Google Scholar 

  54. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  55. Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011)

    Article  ADS  Google Scholar 

  56. Mikami, H., Li, Y., Kobayashi, T.: Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion. Phys. Rev. A 70, 052308 (2004)

    Article  ADS  Google Scholar 

  57. Yamamoto, T., Tamaki, K., Koashi, M., Imoto, N.: Polarization-entangled W state using parametric down-conversion. Phys. Rev. A 66, 064301 (2002)

    Article  ADS  Google Scholar 

  58. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  59. Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  60. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 044305 (2012)

    Google Scholar 

  61. Ota, Y., Ashhab, S., Nori, F.: Implementing general measurements on linear optical and solid-state qubits. Phys. Rev. A 85, 043808 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575045 and 11374054, the SRTP Foundation of China under Grant No. 201510386025 and the Major State Basic Research Development Program of China under Grant No. 2012CB921601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, YH., Xia, Y. & Lu, PM. Two-photon phase gate with linear optical elements and atom–cavity system. Quantum Inf Process 15, 4521–4535 (2016). https://doi.org/10.1007/s11128-016-1429-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1429-2

Keywords

Navigation