Skip to main content
Log in

Rapid generation of a three-dimensional entangled state for two atoms trapped in a cavity via shortcuts to adiabatic passage

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present an efficient protocol to rapidly generate a three-dimensional entangled state for two atoms trapped in a cavity with quantum Zeno dynamics and Lewis–Riesenfeld invariants. The required time for the protocol is much shorter than that with adiabatic passage. The influence of various decoherence processes such as atomic spontaneous emission and photon loss on the fidelity of the three-dimensional entangled state is investigated. Numerical simulation demonstrates that the protocol is robust against both the atomic spontaneous emission and cavity decay. Different from Lin et al. (J Opt Soc Am B 33(4):519–524, 2016), the three-dimensional entangled state can be fast generated with only one step. Furthermore, the protocol can be generalized to generate N-dimensional entanglement state. Therefore, we hope the protocol may be useful in quantum information field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85(11), 2392–2395 (2000)

    Article  ADS  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Xia, Y., Song, J., Lu, P.M., Song, H.S.: Teleportation of an N-photon Greenberger–Horne–Zeilinger (GHZ) polarization-entangled state using linear optical element. J. Opt. Soc. Am. B 27(6), A1–A6 (2010)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68(4), 042315 (2003)

    Article  ADS  Google Scholar 

  8. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  9. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  10. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  11. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  13. Wang, T.J., Song, S.Y., Long, G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85(6), 062311 (2012)

    Article  ADS  Google Scholar 

  14. Kaszlikowski, D., Gnaciński, P., Żukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled N-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85(21), 4418–4421 (2000)

    Article  ADS  Google Scholar 

  15. Vaziri, A., Pan, J.W., Jennewein, T., Weihs, G., Zeilinger, A.: Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett. 91(22), 227902 (2003)

    Article  ADS  Google Scholar 

  16. Li, W.A., Huang, G.Y.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83(2), 022322 (2011)

    Article  ADS  Google Scholar 

  17. Chen, L.B., Shi, P., Zheng, C.H., Gu, Y.J.: Generation of three-dimensional entangled state between a single atom and a Bose–Einstein condensate via adiabatic passage. Opt. Express 20(13), 14547–14555 (2012)

    Article  ADS  Google Scholar 

  18. Shao, X.Q., Zheng, T.Y., Oh, C.H., Zhang, S.: Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission. Phys. Rev. A 89(1), 012319 (2014)

    Article  ADS  Google Scholar 

  19. Wei, X., Chen, M.F.: Generation of N-qubit W state in N separated resonators via resonant interaction. Int. J. Theor. Phys. 54(3), 812–820 (2015)

    Article  MATH  Google Scholar 

  20. Wei, X., Chen, M.F.: Preparation of multi-qubit W states in multiple resonators coupled by a superconducting qubit via adiabatic passage. Quant. Inf. Process. 14(7), 2419–2433 (2015)

    Article  ADS  MATH  Google Scholar 

  21. Collin, E., Ithier, G., Aassime, A., Joyez, P., Vion, D., Esteve, D.: NMR-like control of a quantum bit superconducting circuit. Phys. Rev. Lett. 93(15), 157005 (2004)

    Article  ADS  Google Scholar 

  22. Torosov, B.T., Guérin, S., Vitanov, N.V.: High-fidelity adiabatic passage by composite sequences of chirped pulses. Phys. Rev. Lett. 106(23), 233001 (2011)

    Article  ADS  Google Scholar 

  23. Král, P., Thanopulos, I., Shapiro, M.: Colloquium: coherently controlled adiabatic passage. Rev. Mod. Phys. 79(1), 53–77 (2007)

    Article  ADS  Google Scholar 

  24. Vitanov, N.V., Halfmann, T., Shore, B.W., Bergmann, K.: Laser-induced population transfer by adiabatic passage techniques. Rev. Phys. Chem. 52(1), 763–809 (2001)

    Article  ADS  Google Scholar 

  25. Yu, L.B., Feng, J.S., Dong, p, Li, D.C., Cao, Z.L.: Robust quantum storage and retrieval in a hybrid system by controllable Stark-chirped rapid adiabatic passages. Quant. Inf. Process. 14(9), 3303–3315 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Demirplak, M., Rice, S.A.: On the consistency, extremal, and global properties of counterdiabatic fields. J. Phys. Chem. 129(15), 154111 (2008)

    Article  Google Scholar 

  27. Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42(36), 365303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., del Campo, A., Gué-Odelin, D., Ruschhaupt, A., Chen, X., Muga, J.G.: Shortcuts to adiabaticity. Adv. At. Mol. Opt. Phys. 62(1), 4916–4926 (2013)

    Google Scholar 

  29. Chen, X., Muga, J.G.: Engineering of fast population transfer in three-level systems. Phys. Rev. A 86(3), 033405 (2012)

    Article  ADS  Google Scholar 

  30. Lewis Jr., H.R., Riesenfeld, W.B.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagneticfield. J. Math. Phys. 10(8), 1458–1473 (1969)

    Article  ADS  MATH  Google Scholar 

  31. del Campo, A.: Frictionless quantum quenches in ultracold gases: a quantum-dynamical microscope. Phys. Rev. A 84(3), 031606 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  32. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91(1), 012325 (2015)

    Article  ADS  Google Scholar 

  33. Ruschhaupt, A., Chen, X., Alonso, D., Muga, J.G.: Optimally robust shortcuts to population inversion in two-level quantum systems. New J. Phys. 14(9), 093040 (2012)

    Article  ADS  Google Scholar 

  34. Ibáñez, S., Martínez-Garaot, S., Chen, X., Torrontegui, E., Muga, J.G.: Shortcuts to adiabaticity for non-Hermitian systems. Phys. Rev. A 84(2), 023415 (2011)

    Article  ADS  Google Scholar 

  35. Ibáñez, S., Chen, X., Muga, J.G.: Improving shortcuts to adiabaticity by iterative interaction pictures. Phys. Rev. A 87(4), 043402 (2013)

    Article  ADS  Google Scholar 

  36. Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109(10), 100403 (2012)

    Article  ADS  Google Scholar 

  37. Schaff, J.F., Song, X.L., Vignolo, P., Labeyrie, G.: Fast optimal transition between two equilibrium states. Phys. Rev. A 82(3), 033430 (2010)

    Article  ADS  Google Scholar 

  38. Bowler, R., Gaebler, J., Lin, Y., Tan, T.R., Hanneke, D., Jost, J.D., Home, J.P., Leibfried, D., Wineland, D.J.: Coherent diabatic ion transport and separation in a multizone trap array. Phys. Rev. Lett. 109(8), 080502 (2012)

    Article  ADS  Google Scholar 

  39. Tseng, S.Y., Chen, X.: Engineering of fast mode conversion in multimode waveguides. Opt. Lett. 37(24), 5118–5120 (2012)

    Article  ADS  Google Scholar 

  40. Walther, A., Ziesel, F., Ruster, T., Dawkins, S.T., Ott, K., Hettrich, M., Singer, K., Schmidt-Kaler, F., Poschinger, U.: Controlling fast transport of cold trapped ions. Phys. Rev. Lett. 109(8), 080501 (2012)

    Article  ADS  Google Scholar 

  41. del Campo, A., Rams, M.M., Zurek, W.H.: Assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum Ising model. Phys. Rev. Lett. 109(11), 115703 (2012)

    Article  ADS  Google Scholar 

  42. An, S., Lv, D., del Campo, A., Kim, K.: Shortcuts to Adiabaticity by Counterdiabatic Driving in Trapped-Ion Transport (2016) arXiv:1601.05551v1

  43. Chen, Y.H., Wu, Q.C., Huang, B.H., Xia, Y., Song, J.: Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Phys. Rev. A 93, 052109 (2016)

    Article  ADS  Google Scholar 

  44. Kang, Y.H., Chen, Y.H., Wu, Q.C., Huang, B.H., Xia, Y., Song, J.: Reverse engineering of a Hamiltonian by designing the evolution operators. Sci. Rep. 6, 30151 (2016)

    Article  ADS  Google Scholar 

  45. Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 012326 (2014)

    Article  ADS  Google Scholar 

  46. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89(3), 033856 (2014)

    Article  ADS  Google Scholar 

  47. Chen, Z., Chen, Y.H., Xia, Y., Song, J., Huang, B.H.: Fast generation of three-atom singlet state by transitionless quantum driving. Sci. Rep. 6, 22202 (2016)

    Article  ADS  Google Scholar 

  48. Chen, Y.H., Xia, Y., Song, J., Chen, Q.Q.: Shortcuts to adiabatic passage for fast generation of Greenberger–Horne–Zeilinger states by transitionless quantum driving. Sci. Rep. 5, 15616 (2016)

    Article  ADS  Google Scholar 

  49. Chen, Y.H., Huang, B.H., Song, J., Xia, Y.: Transitionless-based shortcuts for the fast and robust generation of W states. Opt. Commun. 380, 140–147 (2016)

    Article  ADS  Google Scholar 

  50. Huang, X.B., Zhong, Z.R., Chen, Y.H.: Generation of multi-atom entangled states in coupled cavities via transitionless quantum driving. Quantum Inf. Process. 14, 4475–4492 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Shan, W.J., Xia, Y., Chen, Y.H., Song, J.: Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Inf. Process. 15, 2359–2376 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Liang, Y., Wu, Q.C., Su, S.L., Xin, J., Zhang, S.: Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A 91(3), 032304 (2015)

    Article  ADS  Google Scholar 

  53. Lin, J.B., Liang, Y., Song, C., Ji, X., Zhang, S.: Generation of three-dimensional entanglement between two spatially separated atoms via shortcuts to adiabatic passage. J. Opt. Soc. Am. B 33(4), 519–524 (2016)

    Article  ADS  Google Scholar 

  54. Liang, Y., Su, S.L., Wu, Q.C., Xin, J., Zhang, S.: Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics. Opt. Express 23, 5064–5077 (2015)

    Article  ADS  Google Scholar 

  55. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104(6), 063002 (2010)

    Article  ADS  Google Scholar 

  56. del Campo, A.: Shortcuts to adiabaticity by counter-adiabatic driving. Phys. Rev. Lett. 111(10), 100502 (2013)

    Article  MathSciNet  Google Scholar 

  57. Liang, Y., Wu, Q.C., Su, S.L., Ji, X., Zhang, S.: Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A 91(3), 032304 (2015)

    Article  ADS  Google Scholar 

  58. Song, X.K., Ai, Q., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics. Phys. Rev. A 93, 052324 (2016)

    Article  ADS  Google Scholar 

  59. Horoche, S., Kleppner, D.: Cavity quantum electrodynamics. Phys. Today 42(1), 24–30 (1989)

    Article  ADS  Google Scholar 

  60. Metz, J., Beige, A.: Macroscopic quantum jumps and entangled state preparation. Phys. Rev. A 76(2), 022331 (2007)

    Article  ADS  Google Scholar 

  61. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436(7047), 87–90 (2005)

    Article  ADS  Google Scholar 

  62. Wieman, C.E., Pritchard, D.E., Wineland, D.J.: Atom cooling, trapping, and quantum manipulation. Rev. Mod. Phys. 71(2), S253–S262 (1999)

    Article  Google Scholar 

  63. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003)

    Article  ADS  Google Scholar 

  64. Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41(5), 2295–2300 (1990)

    Article  ADS  Google Scholar 

  65. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74(24), 4763–4766 (1995)

    Article  ADS  Google Scholar 

  66. Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89(8), 080401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Luis, A.: Quantum-state preparation and control via the Zeno effect. Phys. Rev. A 63(5), 052112 (2001)

    Article  ADS  Google Scholar 

  68. Lohe, M.A.: Exact time dependence of solutions to the time-dependent Schrödinger equation. J. Phys. A Math. Theor. 42(3), 035307 (2008)

    Article  ADS  MATH  Google Scholar 

  69. Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno subspaces. J. Phys. Conf. Ser 196(1), 012017 (2009)

    Article  MATH  Google Scholar 

  70. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two-and three-level atoms. Phys. Rev. Lett. 105(12), 123003 (2010)

    Article  ADS  Google Scholar 

  71. Lai, Y.Z., Liang, J.Q., Müller-Kirsten, H.J.W., Zhou, J.G.: Time-dependent quantum systems and the invariant Hermitian operator. Phys. Rev. A 53(5), 3691–3693 (1996)

    Article  ADS  Google Scholar 

  72. Lai, Y.Z., Liang, J.Q., Müller-Kirsten, H.J.W., Zhou, J.G.: Time evolution of quantum systems with time-dependent Hamiltonian and the invariant Hermitian operator. J. Phys. A Math. Gen. 29(8), 1773–1783 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Spillane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J.: Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91(4), 043902 (2003)

    Article  ADS  Google Scholar 

  74. Metz, J., Beige, A.: Macroscopic quantum jumps and entangled-state preparation. Phys. Rev. A 76(2), 022331 (2007)

    Article  ADS  Google Scholar 

  75. Miroshnychenko, Y., Alt, W., Dotsenko, I., Förster, L., Khudaverdyan, M., Meschede, D., Schrader, D., Rauschenbeutel, A.: Quantum engineering: an atom-sorting machine. Nature 442(7099), 151–154 (2006)

    Article  ADS  Google Scholar 

  76. Trupke, M., Hinds, E.A., Eriksson, S., Curtis, E.A., Moktadir, Z., Kukharenka, E., Kraft, M.: Microfabricated high-finesse optical cavity with open access and small volume. Appl. Phys. Lett. 87(21), 211106 (2005)

    Article  ADS  Google Scholar 

  77. Spillane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultra-high-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71(1), 013817 (2005)

    Article  ADS  Google Scholar 

  78. Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2(12), 849–855 (2006)

    Article  Google Scholar 

  79. Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67(3), 033806 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575045 and 11374054, and the Major State Basic Research Development Program of China under Grant No. 2012CB921601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YF., Chen, YH., Wu, QC. et al. Rapid generation of a three-dimensional entangled state for two atoms trapped in a cavity via shortcuts to adiabatic passage. Quantum Inf Process 16, 15 (2017). https://doi.org/10.1007/s11128-016-1453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1453-2

Keywords

Navigation