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We consider pure fermionic states with a varying number of quasiparticles and analyze two types
of reduced density operators: one is obtained via tracing out modes, the other is obtained via tracing
out particles. We demonstrate that spectra of mode-reduced states are not identical in general and
fully characterize pure states with equispectral mode-reduced states. Such states are related via local
unitary operations with states satisfying the parity superselection rule. Thus, valid purifications for
fermionic density operators are found. To get particle-reduced operators for a general system, we
introduce the operation Φ(̺) =

∑
i
ai̺a

†
i . We conjecture that spectra of Φp(̺) and conventional

p-particle reduced density matrix ̺p coincide. Nontrivial generalized Pauli constraints are derived
for states satisfying the parity superselection rule.

PACS numbers: 03.65.Aa, 03.65.Fd, 03.67.Bg, 05.30.Fk

I. INTRODUCTION

The physical nature of information [1] not only pro-
vides new ways of information processing (like quantum
computing [2]) but also stimulates the research of spe-
cific information carriers — particles and quasiparticles
with peculiar properties. This paper deals with particular
quantum states which represent a superposition of states
with different numbers of fermionic quasiparticles.

After electrons were argued to possess the additional
degree of freedom [3] (later called spin [4]) and obey the
Pauli exclusion principle [5], the Fermi–Dirac statistics
was found [6, 7] and the general notion of fermion par-
ticles emerged. The antisymmetric nature of fermionic
wavefunction [7] has provoked development of the canon-
ical anticommutation relation [8] and the general theory
of second quantization [9], which deals with systems with
a varying number of particles. The fermionic statistics
of half-integer spin particles was established in [10, 11].
Since every fermion has a half-integer spin, the total spin
of an even number of fermions must be integer, whereas
that of an odd number of fermions must be half-integer.
Given a system with a varying number of particles, it is
therefore possible to have a superposition of half-integer
and integer total spins. However, it was recognized later
that the comparison of phases between states with half-
integer and integer angular momenta cannot be reconciled
with the requirement of relativistic invariance [12], which
resulted in the formulation of parity (spinor, univalence)
superselection rule (see, e.g., the reviews [13–15]). Any
superselection rule relies on a group of physical transfor-
mations, for example the parity superselection rule relies
on the rotational invariance [16] whereas the mass super-
selection rule relies on the Galilean invariance of non-
relativistic quantum mechanics [17]. If a system of lep-
tons were invariant with respect to fermionic U(1) trans-
formations, there would be a leptonic family number su-
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perselection rule, however, the recent experiments clearly
indicate the neutrino oscillations (see, e.g., [18]), which
contradicts to the conservation of leptonic family num-
ber (the violation was predicted in Ref. [19]). Thus, the
experimental investigations of nature modify our under-
standing of fundamental symmetries, the physical models,
and the mathematical frameworks used for their descrip-
tion. Recent experiments with massless Weyl fermionic
quasiparticles [20–22] stimulate us to investigate proper-
ties of fermionic states in coherent superpositions of differ-
ent number states. Moreover, superpositions of different
number states usually emerge in fermionized models (see,
e.g. [23]).

In this paper, we analyze properties of general pure
fermionic states with a varying number of quasiparti-
cles from the viewpoint of quantum information theory,
namely, we consider the spectra of two reduced operators
obtained from such a state by two different approaches:
reduction of modes and reduction of particles.

Suppose a state space H composed of two sets of modes
H1 and H2. The mode represents a single-particle state
that is either occupied or not. In quantum information
theory, H1 and H2 may correspond to distant laborato-
ries. In solid state physics, H1 andH2 may describe differ-
ent positions or momenta of quasiparticles. In quantum
chemistry, H1 and H2 may be attributed to two distinct
sets of spin-orbits. In this paper, we consider situations,
when the number of particles may change not only in H1

and H2 but in the common space H too. Suppose a local
physical observable A1 ∈ A1 acting on modes H1 only,
for instance, A1 can be the local energy or the popu-
lation of modes in H1. On the one side, the quantum-
mechanical mean value 〈A1〉 = ω(A1) = Tr(̺A1), where
ω is a functional defined on the common algebra of opera-
tors A = A1 ×A2 and ̺ is the total density operator. On
the other side, 〈A1〉 = ω1(A1) = Tr(̺1A1), where ω1 is
a functional defined on the algebra of local operators A1

and ̺1 is the mode-reduced density operator. [65] Anal-
ogously, ω2 and ̺2 represent a mode-reduced state of the
second set of modes. Thus, for physical systems with two
separate sets of single-particle sets, mode reduced states
naturally occur as algebraic constructions. Such algebraic
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constructions are well defined for systems with a variable
number of quasiparticles, so we explore spectral properties
of ω1 and ω2 in this paper.

The inverse procedure to reduction is known as a purifi-
cation and takes a simple form in tensor product spaces
because the two spectra are identical (an immediate conse-
quence of the Schmidt decomposition). We demonstrate
that spectra of mode-reduced states do not necessarily
coincide for a general fermionic state, which can be in-
terpreted as a violation [24] of the Araki–Lieb inequal-
ity [25]. This fact should be taken into account when the
entanglement of pure states is quantified via the entropy
of one of subsystems [26]. The discrepancy between spec-
tra (entropies) of subsystems of a pure state seems to be
unphysical (since the result depends on labelling), so we
further find necessary and sufficient conditions for spectra
to be coincident for mode-reduced states. In particular,
we not only find that spectra coincide for states satisfy-
ing the parity superselection rule [27] but also prove that
all states with equispectral subsystems are the univalent
states subjected to local unitary transformations.

Suppose now that one is interested in an average p-
particle property, for instance, the average spin projection
(p = 1) or the average two-electron Coulomb interaction
(p = 2). In this case, one should trace out all irrelevant
particles. In quantum chemistry, a particle reduction is
realized by integrating over irrelevant particles’ coordi-
nates [28–30], which results in the so-called p-particle re-
duced density matrix (see, e.g., [31]). Such an approach
provides new inequalities for fermionic occupation num-
bers and leads to the generalized Pauli constraints [32–
35]. As far as systems with a varying number of particles
are concerned, the construction of p-particle reduced den-
sity matrices is non-trivial and we discuss it in this pa-
per. Moreover, we also consider the traced out part Φp(̺)
with a varying number of particles. Thus, we generalize
particle-reduction technique for systems with a varying
number of quasiparticles and compare the spectra of p-
particle reduced density matrix and Φp(̺).

As a by-product, we formalize the density matrix con-
struction for states with a varying number of fermions.
Our description of fermionic density operator differs from
that used by Cahill and Glauber [36].

The problem of our interest — possible pure fermionic
states with equispectral reduced density operators — is
connected with the problem of calculating von Neumann
entropy for the fermionic dynamical systems and esti-
mating capacities of fermionic quantum channels [37, 38].
One may expect that the transfer of quantum information
through a fermionic channel would be different from that
for bosons [39], as the fermionic theory differs from the
qubit theory [40, 41] in both tomography [42] and quan-
tum computation [43].

The paper is organized as follows. In Sec. II, we de-
scribe the notation used and formulate the problem. In
Sec. III, the density matrix formalism is concisely clari-
fied. In Sec. IV, the main results regarding the spectra
of mode-reduced states are obtained. In Sec. V, the con-
struction and spectrum of particle-reduced operators are
analyzed. In Sec. VI, brief conclusions are given.

II. NOTATION

Consider the algebra of canonical anticommutation rela-
tions (CAR algebra) A generated by the ladder operators
as, a

†
s satisfying the relations [8, 44]

asa
†
t + a

†
tas = δstI,

asat + atas = a†sa
†
t + a

†
ta

†
s = 0,

where s, t = 1, . . . , n. Let Hn be a Hilbert space with
the dimension dimHn = 2n and {|j1 . . . jn〉} be a fixed
orthonormal basis, where indices js = 0, 1. We shall sup-
pose that A is realized as the algebra of operators in Hn

such that

a
†
t |j1 . . . jn〉

=







exp

(

iπ
t−1∑

s=1
js

)

|j1 . . . jt−1 1 jt+1 . . . jn〉 if jt = 0,

0 if jt = 1,
(1)

and at is conjugate to a†t .
A positive functional ω ∈ B(Hn)

∗ normed by the con-
dition ω(I) = 1 is called a state on the algebra of all
bounded operators B(Hn) in Hn. Given a state ω, there
exists a unique positive unit-trace operator ̺ such that
ω(x) = Tr(̺x), x ∈ B(Hn). A spectrum of ω is defined as
the spectrum of ̺. The following definition [45] will play
a major role in our analysis:

Definition 1. The state |ψ〉 satisfies the parity superse-
lection rule if a unit vector |ψ〉 ∈ H has the form

|ψ〉 =
∑

j1,...,jn∈{0,1}

λj1...jn |j1 . . . jn〉, λj1...jn ∈ C, (2)

where all the numbers
∑

s js are even or odd alternatively
for all non-zero λj1...jn .

The set of all states satisfying the superselection rule
contains the important subset consisting of pure states
for which the number of particles N is fixed. If this is the
case, non-zero terms in (2) satisfy the condition

∑

s js =
N = const. It is worth mentioning that all pure quasifree
fermionic states have a fixed number of particles [46, 47].
Another important class of fermionic states is deter-

mined by their peculiar action on monomials of the odd
order:

Definition 2. The state ω is said to be even if

ω(a#s1 . . . a
#
s2k+1

) = 0

for any choice of 2k + 1 ladder operators a#s = as or
a#s = a†s.

The relation between the above classes becomes espe-
cially clear in the case of pure states.

Proposition 1. The pure state ω is even iff it satisfies
the parity superselection rule.

Proof. Suppose that ω satisfies the parity superselec-
tion rule. Consider the representation (2). Since the
odd order monomial a#s1 . . . a

#
s2k+1

changes even number
of particles to the odd one and vice versa, the vectors
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a#s1 . . . a
#
s2k+1

|j1 . . . jn〉 and |j̃1 . . . j̃n〉 are orthogonal for

any choice of a#s if |j1 . . . jn〉 and |j̃1 . . . j̃n〉 correspond
to non-zero terms in Eq. (2). It follows that ω is even.
If ω does not satisfy the parity superselection rule, then

its representation in the form of (2) contains at least
two non-zero terms, say |j1 . . . jn〉 and |j̃1 . . . j̃n〉, such
that

∑

s js and
∑

s j̃s have different parity. There ex-
ists a unique monomial of the odd order as1 . . . as2k+1

,
which is a partial isometrical operator mapping |j1 . . . jn〉
to |j̃1 . . . j̃n〉 and mapping all other basis vectors to zero.
Thus, the value of ω is not equal to zero on this monomial.
Hence, ω cannot be even.

Before we proceed to the analysis of mode and particle
reductions of fermionic states, we construct the density
matrix formalism in the convenient form.

III. DENSITY MATRIX FOR FERMIONS

Let us consider n fermionic modes and the correspond-
ing CAR algebra A, dimA = 4n. The generators of A are
asa

†
s, as, a

†
s, and a†sas, s = 1, . . . , n. Binary representa-

tion of numbers 0, . . . , 2n− 1 forms the set of multiindices
J ∋ J = (j1, . . . , jn), js ∈ {0, 1}. Given two multiindices
J,K ∈ J , let us define AJK ∈ A by the formula

AJK = c
†
j1
c
†
j2
. . . c

†
jn
ckn

. . . ck2
ck1
, (3)

where

c
†
js

=

{
asa

†
s if js = 0,

a†s if js = 1;
cks

=

{

asa
†
s if ks = 0,

as if ks = 1.
(4)

Proposition 2. The following relation holds:

AJK = |j1 . . . jn〉〈k1 . . . kn|.

Proof. Consider the operator CK = ckn
. . . ck1

, which is a
rank one partial isometry in the sense that CK = |ϕ〉〈χ|
for some unit vectors |ϕ〉, |χ〉 ∈ H that are either orthogo-
nal or coincide. Moreover, CK |k1 . . . kn〉 = |0 . . . 0〉. Then,

AJK = C
†
JCK , which concludes the proof.

The construction similar to that in Eq. (3) was used in
the paper [48] for other purposes.

Corollary 1. The element ̺ ∈ A defines a valid quantum
state iff it can be represented in the form

̺ =
∑

J,K∈J

λJKAJK , (5)

where (λJK) is a positive semidefinite matrix with the unit
trace

∑

J λJJ = 1 (fermionic density matrix).

Proof. Any element of the algebraA can be represented in
the form (5) because (AJK) are matrix units due to Propo-
sition 2. The functional ω(x) =

∑

J,K∈J λJKTr(AJKx)
gives non-negative values for positive semidefinite opera-
tors x if and only if (λJK) is a positive semidefinite matrix
too (as the functional is a trace of the product of two ma-
trices). Finally, ω(I) =

∑

J λJJ = 1.

The 2n×2n matrix (λJK) is a fermionic density matrix
and fulfils the conventional requirements (Hermitian, posi-
tive semidefinite, and unit trace). The following Corollary
provides a convenient description of the density operator.

Corollary 2. The 2n×2n matrix with elements 〈AKJ〉 is
a density matrix of an n-mode fermionic state over which
the average is taken.

Proof. In fact, 〈AKJ 〉 = Tr(A†
JK̺) = λJK .

Example 1. Using Eq. (3) and Corollary 2, the 2-mode
fermionic state can be described by the (total) density
matrix







〈a1a
†
1a2a

†
2〉 〈a1a

†
1a

†
2〉 〈a†1a2a

†
2〉 〈a†1a

†
2〉

〈a1a
†
1a2〉 〈a1a

†
1a

†
2a2〉 〈a†1a2〉 〈a†1a

†
2a2〉

〈a1a2a
†
2〉 〈a†2a1〉 〈a†1a1a2a

†
2〉 〈a†1a

†
2a1〉

〈a2a1〉 〈a1a
†
2a2〉 〈a†1a2a1〉 〈a†1a1a

†
2a2〉






,

(6)
which is constructed with the help of conventional sets of
multiindices J ,K = {(0, 0); (0, 1); (1, 0); (1, 1)} and differs
from symbols used in the description of fermionic Gaus-
sian states [49] (reviewed, e.g., in [50]). �

IV. SPECTRA OF MODE-REDUCED STATES

In this section, we deal with coherent superpositions
of different number states, so we exploit the bipartition
based not on the particles but rather on fermionic modes.
Fermionic modes can be thought of as nodes that can be
either occupied or not by particles. The bipartition is
merely an aggregation of all nodes into two groups. For
instance, bipartitions with respect to different spin com-
ponents were considered recently [51]. Mathematically,
we deal with the algebraic bipartition in the second quan-
tized description [52–56], which is used in the study of
entanglement [45, 57–60].
Partition of modes is performed among single-particle

states that fermions can potentially occupy, for exam-
ple, nodes of some lattice potential in coordinate con-
figuration space, or states with different momentum in
momentum configuration space. Let the first subsystem
contain m modes and the second one contain n − m
modes. In mathematical terms, A is obtained by join-
ing two algebras of canonical anticommutation relations

A1 and A2 with the generators {a1, a
†
1, . . . , am, a

†
m} and

{am+1, a
†
m+1, . . . , an, a

†
n}, respectively. Fix a unit vector

|ψ〉 ∈ H .

Definition 3. The states ωj(x) = 〈ψ|x|ψ〉, x ∈ Aj that
are the restrictions of a pure state |ψ〉〈ψ| to the algebras
Aj , j = 1, 2, are said to be mode-reduced (partial) states
of |ψ〉〈ψ|.

Example 2. For a state (6) the reduced density matrices
describing the first mode and the second mode read

(
〈a1a

†
1〉 〈a†1〉

〈a1〉 〈a†1a1〉

)

and

(
〈a2a

†
2〉 〈a†2〉

〈a2〉 〈a†2a2〉

)

, (7)

respectively. Note that both matrices (7) cannot be si-
multaneously obtained from the total density matrix (6)
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by conventional partial trace methods. This is a peculiar
property of fermionic states which differs them from the
bosonic ones. �

Remark 1. Let us clarify the relation between the in-
troduced definition of the mode-reduced states and the
orbital reduced density matrices used in quantum chem-
istry [61, 62].
In quantum chemistry, the mode is a composite of the

space orbital state and the electron spin projection (| ↑〉
or | ↓〉), and the whole system state vector is written in
the form |Ψ〉 =

∑

n1,...,nL
ψn1,...,nL

|n1〉⊗ . . .⊗|nL〉, where
ni = 0, 1 indicates the occupation of the corresponding
spin-orbit, L is the number of active spin-orbits. The
antisymmetric property of the electron wavefunction is
encoded in the coefficients ψn1,...,nL

, and the global basis
states |n1〉 ⊗ . . . ⊗ |nL〉 already have the tensor product
structure. The reduced states are then readily obtained
by tracing out undesired orbits.
Alternatively, one can use antisymmetric vectors

(Slater determinants) |e1〉 = |n1 . . . ni−1〉, |e2〉 =
|ni+1 . . . nj−1〉, |e3〉 = |nj+1 . . . nL〉 and expand |Ψ〉 =
∑

ni,nj ,e1,e2,e3
ψni,nj ,e1,e2,e3 |e1〉 ⊗ |ni〉 ⊗ |e2〉 ⊗ |nj〉 ⊗ |e3〉.

The reduced 2-mode state reads Tre1,e2,e3 |Ψ〉〈Ψ| as each
vector |e1〉 ⊗ |ni〉 ⊗ |e2〉 ⊗ |nj〉 ⊗ |e3〉 does have a tensor
product structure. Using the orbit basis |ni〉 = {|0〉, | ↑
〉, | ↓〉, | ↑↓〉}, one gets the 2-orbital reduced density oper-
ator [61].
In our approach, the global basis states |j1 . . . jn〉 are

antisymmetric automatically and coefficients λj1...jn in
Eq. (2) are arbitrary. Thus, we deal with basis states
that do not have the tensor product structure at all. Sim-

ilarly, the action of mode operators at and a
†
t is non-

local. Since transitions between the states with different
numbers of particles are prohibited in quantum chemistry
[61, 62], both quantum-chemical and our definitions of re-
duced states do coincide for systems with a fixed number
of electrons. The downside of the quantum-chemical def-
inition may only appear for systems with variable num-
ber of particles, since the creation and annihilation op-
erators cannot be represented in the tensor product form
I⊗. . .⊗I⊗|1〉〈0|⊗I⊗. . .⊗I or I⊗. . .⊗I⊗|0〉〈1|⊗I⊗. . .⊗I.
�

Our further goal is to characterize all the states that
have equispectral mode-reduced states. To anticipate
general results, let us begin with the simplest case of
two fermionic modes that can be occupied by a system
with a varying number of quasiparticles in a pure state
|ψ〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉. According to
Example 1 the total density matrix (6) for such a state is
(c00, c01, c10, c11)

⊤ × (c00, c01, c10, c11) and corresponds to
the pure state indeed, whereas the reduced density matri-
ces (7) take the form

Λ1 =

(
|c00|

2 + |c01|
2 c00c10 + c01c11

c00c10 + c01c11 |c10|
2 + |c11|

2

)

and

Λ2 =

(
|c00|

2 + |c10|
2 c00c01 − c10c11

c00c01 − c10c11 |c01|
2 + |c11|

2

)

,

respectively. The spectra of Λ1 and Λ2 would be identical
if and only if Tr(Λ1) = Tr(Λ2) and Tr(Λ2

1) = Tr(Λ2
2). The

first condition always holds true whereas the second one

reduces to Tr(Λ2
1 − Λ2

2) = 8Re(c00c11c01c10) = 0. This
observation can be summarized as follows.

Proposition 3. The two-mode fermionic state |ψ〉 =
c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉 has equispectral mode-
reduced density operators if and only if Re(c00c11c01c10) =
0.

Example 3. Suppose |ψ〉 = 1
2 (|00〉+ |01〉+ |10〉+ |11〉),

then Spect(ω1) = {0, 1} whereas Spect(ω2) = { 1
2 ,

1
2}. �

Theorem 1. Suppose that a pure state ω satisfies the
parity superselection rule. Then, the spectra of ω1 and ω2

coincide.

Proof. Let us define an isometry U : Hn → Hm ⊗Hn−m

by the formula

U |j1 . . . jn〉 = |j1 . . . jm〉 ⊗ |jm+1 . . . jn〉. (8)

Then

Ua#s U
† =

{

a
(1)#
s ⊗ I if s = 1, . . . ,m,

Γ⊗ a
(2)#
s if s = m+ 1, . . . , n,

(9)

where the fermionic operators a
(1)#
s and a

(2)#
s act on

Hilbert spaces Hm and Hn−m, respectively, and Γ =
∏m

s=1(a
(1)
s a

(1)†
s − a

(1)†
s a

(1)
s ).

Consider the pure state Ω(X) = ω(U †XU), X ∈
B(Hm ⊗ Hn−m). The spectra of Ω1 = TrHn−m

(Ω) and
Ω2 = TrHm

(Ω) are known to coincide as an immediate
consequence of the Schmidt decomposition in tensor prod-
uct Hilbert space Hm ⊗Hn−m (see, e.g., [63]). It follows
from the construction that for all x ∈ A1 we have

ω1(x) = ω(x) = Ω(UxU †) = Ω(x(1) ⊗ I) = Ω1(x), (10)

therefore, ω1 and Ω1 have the same spectra.
To prove that spectra of ω2 and Ω2 coincide too,

we first notice the trivial action of these functionals
on odd order monomials, namely, ω2(a

#
s1
. . . a#s2k+1

) =

ω(a#s1 . . . a
#
s2k+1

) = 0 because ω is even state in virtue of
Proposition 1. On the other hand, for all m+ 1 ≤ sp ≤ n

Ω2(a
(2)#
s1

. . . a(2)#s2k+1
) = Ω(I ⊗ a(2)#s1

. . . a(2)#s2k+1
)

= ω

(
m∏

s=1

(asa
†
s − a†sas)a

#
s1
. . . a#s2k+1

)

= 0 (11)

because ω is even. Thus, both ω2 and Ω2 vanish on odd
monomials. As far as even monomials are concerned,

ω(a#s1 . . . a
#
s2k

) = Ω(Ua#s1 . . . a
#
s2k
U †)

= Ω(Γ2k ⊗ a(2)#s1
. . . a(2)#s2k

) = Ω2(s
(2)#
s1

. . . a(2)#s2k
) (12)

because Γ2k = I. Thus, ω2 and Ω2 coincide on even
monomials too. To conclude, Spect(ω1) = Spect(Ω1) =
Spect(Ω2) = Spect(ω2).

The obtained result shows that states satisfying the
parity superselection rule have equispectral mode-reduced
states and, therefore, are physical. Note that superse-
lected states do not necessary have a fixed number of par-
ticles, and we believe that a coherent superposition (not
a mixture) of states with different numbers of fermionic
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quasiparticles can be observed in future experiments [20–
22]. From a mathematical viewpoint, it is interesting to
find all possible states with equispectral mode-reduced
states. The answer to this question provides the following
theorem.

Theorem 2. Suppose that for a pure state |ψ〉〈ψ| the
partial states ω1 and ω2 have identical spectra. Then,
there exist a state |φ〉〈φ| satisfying the parity superselec-
tion rule and unitary operators U1 ∈ A1, U2 ∈ A2 such
that the partial states of |U2U1φ〉〈U2U1φ| coincide with
ωi, i = 1, 2. If the spectra of ωi are simple (nondegener-
ate), then |ψ〉 = U1U2|φ〉.

Proof. Without loss of generality it can be assumed that
bipartition of n fermionic modes into m and n−m modes
is such that n − m ≤ m (otherwise the modes can be
relabelled).
Consider the state ω2. In the Hilbert space Hn−m

choose the orthonormal basis {|ejm+1...jn〉} such that for
all x ∈ A2

ω2(x) =
∑

js=0,1: m+1≤s≤n

λjm+1...jn〈ejm+1...jn |x|ejm+1...jn〉.

Pick the unitary operator U2 ∈ A2 such that

U2|jm+1 . . . jn〉 = |ejm+1...jn〉, js ∈ {0, 1}, m+1 ≤ s ≤ n.

Consider the pure state ω̃(x) = ω(U2xU
†
2 ), x ∈ A. Then

for all x ∈ A2 we have

ω̃2(x) =
∑

js=0,1: m+1≤s≤n

λjm+1...jn〈jm+1 . . . jn|x|jm+1 . . . jn〉.

(13)
Since ω1 and ω2 are equispectral by the statement of

Theorem, the states ω̃1 and ω̃2 are equispectral too due
to the local action of U2. Consequently, there exists the

orthonormal basis {|ft〉}
2n−m−1
t=0 ∪{|gt〉}

2m−1
t=2n−m in Hm such

that for all x ∈ A1

ω̃1(x) =

2n−m−1∑

t=0

λjm+1...jn=bin(t)〈ft|x|ft〉, (14)

where bin(t) is the binary representation of t. Pick the
unitary operator U1 ∈ A1 such that

U1 | 0 . . . 0
︸ ︷︷ ︸

2m− n

bits

bin(t)
︸ ︷︷ ︸

n−m

bits

〉 = |ft〉, t = 0, . . . , 2n−m − 1,

U1 | bin(t)
︸ ︷︷ ︸

m

bits

〉 = |gt〉, t = 2n−m, . . . , 2m − 1.

It is not hard to see that a vector

|φ〉 =
2n−m−1∑

t=0

√

λjm+1...jn=bin(t) | 0 . . . 0
︸ ︷︷ ︸

2m− n

bits

bin(t)
︸ ︷︷ ︸

n−m

bits

bin(t)
︸ ︷︷ ︸

n−m

bits

〉

generates the state Ω(x) = 〈φ|x|φ〉, x ∈ A, which sat-
isfies the parity superselection rule as the number of

quasiparticles in t-th summand equals an even number
2× (# of 1’s in bin(t)). Moreover, Ω has ω̃2 and ˜̃ω1(x) =

ω̃1(U1xU
†
1 ) as its partial states. In other words, the mode-

reduced states of |ψ〉〈ψ| and the mode-reduced states of
|U2U1φ〉〈U2U1φ| coincide.
Now suppose that the coincident spectra of ωi, i = 1, 2

are simple (nondegenerate). Take the unitary operators
U and Γ determined in Eq. (8) and consider the state

Ω̃(X) = Ω(U †XU), X ∈ A1 ⊗A2. According to Eq. (10),

for all x ∈ A1 we have Ω̃1(x) = ˜̃ω1(x). Analogously, since
Ω is even, from Eqs. (11)–(12) it follows that for all x ∈ A2

the relation Ω̃2(x) = ω̃2(x) holds.
On the other hand, as the spectrum of Ωi is simple

there exists the only state on A1 ⊗ A2 (namely, Ω̃) such
that its partial traces coincide with Ω1 and Ω2 (see, e.g.,
[63]). Hence, the same uniqueness holds for the state on A
(namely, Ω). Thus, there is the only possibility to recon-
struct the entire state from its partial states. It implies

that ω(x) = Ω(U †
1U

†
2xU2U1) for all x ∈ A.

Theorem 2 characterizes possible states with equispec-
tral mode-reduced states. Such states do not have to sat-
isfy the parity superselection rule (cf. Proposition 3) but
they are obtained from the superselected states by unitary
operators acting on corresponding parties of the bipartite
state.

V. SPECTRA OF PARTICLE-REDUCED

OPERATORS

In this section, we consider reductions over particles.
When the number of particles N is fixed, as it takes place
in quantum chemistry, the reduction is performed by in-
tegrating the density operator ̺(x1, . . . , xN , x

′
1, . . . , x

′
N )

over some particles’ coordinates [28–31]. This results in
the so-called p-particle reduced density matrix (p-RDM):

̺p-RDM(x1, . . . , xp;x
′
1, . . . , x

′
p)

=

∫

̺(x1, . . . , xp, xp+1, . . . , xN ;x′1, . . . , x
′
p, xp+1, . . . , xN )

×dxp+1 . . . dxN . (15)

If a pure fermionic state ̺ has exactly N particles,
then the spectra of reduced density matrices ̺p-RDM and
̺(N−p)-RDM are known to coincide [28]. Eigenvalues of
1-RDM are called natural occupation numbers. In gen-
eral case, natural occupation numbers cannot be arbitrary
ones within [0, 1] (simple Pauli’s exclusion principle) and
must satisfy generalized Pauli constraints [32–35].
Let us generalize the construction of reduced density

matrices for states with a varying number of particles.
In the second quantization formalism, the integration in
Eq. (15) takes the form

̺p-RDM(s1, . . . , sp; t1, . . . , tp) = 〈a†s1 . . . a
†
sp
atp . . . at1〉,

(16)
where sq, tq = 1, . . . , n, i.e. all modes are accessible. Note
that all sq are to be different and all tq are to be different
for expression (16) not to vanish.
The definition (16) implies that p-RDM does not have

unit trace (in contrast to Eq. (15)). If the number of
particles in the state ̺ is fixed and equals N , then one
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can introduce a factor (N−p)!
N ! in the right-hand side of

Eq. (16) to make its trace unit [29]. As our aim is to
deal with general states that do not have a fixed number
of particles, we do not introduce any factors in the right-
hand side of Eq. (16).
As far as the states ̺ with a variable number of parti-

cles are concerned, average values (16) are still meaningful
and can be calculated. This enables one to construct the
particle-reduced density operator in B(Hn) as follows:

̺p =
∑

s1 < . . . < sp
t1 < . . . < tp

〈a†s1 . . . a
†
sp
atp . . . at1〉 a

†
t1
. . . a

†
tp
asp . . . as1

×
∏

s 6= s1, . . . , sp,

t1, . . . , tp

asa
†
s. (17)

Note that the number of particles in the operator (17)
is fixed without regard to a possible variable number of
particles in the original state. Product

∏

s in formula (17)
is responsible for unoccupied modes.

Example 4. The two-mode fermionic state |ψ〉 =
c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉 has 1-RDM of the

form

(
|c10|

2 + |c11|
2 c01c10

c01c10 |c01|
2 + |c11|

2

)

whose spectrum is

(|c01|
2 + |c10|

2 + |c11|
2, |c11|

2) = (1 − |c00|
2, |c11|

2). There
are no constraints on natural occupation numbers λ1, λ2 ∈
[0, 1]. This is in agreement with a general statement that
in Fock space there are no constraints on the spectra of
the 1-RDM other than those imposed by the Pauli’s exclu-
sion principle [64]. However, if we restrict |ψ〉 to satisfy
the parity superselection rule, then the generalized con-
straint on natural occupation numbers appears: λ1 = λ2
for states with even parity, λ2 = 0 for states with odd
parity. �

Example 5. Odd parity 3-mode fermionic state
c100|100〉+c010|010〉+c001|001〉+c111|111〉 has natural oc-
cupation numbers λ1 = |c100|

2+ |c010|
2+ |c001|

2+ |c111|
2 =

1, λ2 = λ3 = |c111|
2. The requirements λ1 = 1 and

λ2 = λ3 may be considered as generalized Pauli con-
straints in this case. �

Suppose the physical process of tracing out 1 particle
from a general fermionic state with a variable number of
particles. The result of this operation still contains a vari-
able number of particles so it cannot be described by a
reduced density matrix (16). This operation is rather de-
scribed by the map

Φ(̺) =
∑

j

aj̺a
†
j . (18)

If the state ̺ has a fixed number of particles, say N , then
Φ(̺) is anN−1 particle operator, which coincides with the
reduced density operator ̺N−1 given by formula (17) (see
the proof below). Thus, the map Φ can be considered as a
generalization of integration over one particle coordinates.
Sequentially applying this map p times we get Φp, which
is nothing else but tracing out p particles.

Proposition 4. Suppose the density operator ̺ has a fixed
number N of particles, then ΦN−p(̺) = ̺p.

Proof. According to Corollary 1, ̺ =
∑

|J|=|K|=N λJKAJK , where |J | =
∑

s js is the number of

particles present in the multiindex J . Using the explicit
form of operators (4), we get

AJK = a†s1 . . . a
†
sN
atN . . . at1

︸ ︷︷ ︸

s1 < . . . < sN : jsq = 1
t1 < . . . < tN : ktr = 1

∏

s: js=ks=0

asa
†
s, (19)

alAJKa
†
l =







a†s1 . . . al . . . a
†
sN
atN . . . a

†
l . . . at1

×
∏

s: js=ks=0 asa
†
s if jl = kl = 1,

0 otherwise,

(20)

which follows from ala
†
l ala

†
l = ala

†
l . On the other hand,

substituting AJK for ̺ in formula (17) yields

(AJK)N−1 =
∑

l: jl=kl=1

a†s1 . . . al . . . a
†
sN
atN . . . a

†
l . . . at1

×
∏

s: js=ks=0

asa
†
s, (21)

which implies that Φ(̺) = ̺N−1. Applying this relation
N − p times, we get the statement of Proposition 4.

Corollary 3. The operators ̺p and Φp(̺) have the same
spectra for pure states ̺ with a fixed number of particles.

Proof. The statement is an immediate consequence of
Proposition 4 and the fact that for pure states Spec(̺p) =
Spec(̺N−p) [28].

Example 6. The spectra of ̺p and Φp(̺) may coincide
not only for states with a fixed number of particles. The
coincidence of spectra of ̺1 and Φ(̺) takes place for a
general two-mode fermionic state |ψ〉 = c00|00〉+c01|01〉+
c10|10〉 + c11|11〉. It is not hard to see from the matrix
representation (6) of Φ(|ψ〉〈ψ|) which reads






|c01|
2 + |c10|

2 c10c11 −c01c11 0
c10c11 |c11|

2 0 0
−c01c11 0 |c11|

2 0
0 0 0 0




 . (22)

Eigenvalues of (22) are the same as those of 1-RDM found
in Example 4. �

Consideration of other examples (general 3- and 4-mode
pure states) also results in equispectral particle reductions
̺p and Φp(̺). We can make a conjecture that spectra of
operators ̺p and Φp(̺) coincide for any pure fermionic
state ̺.

VI. CONCLUSIONS

We have constructed mode- and particle-reduced
fermionic density operators for states with a varying num-
ber of particles and analyzed their spectra. The mode
reduction is based on the restriction functional ω(x) =
Tr(̺x) to subalgebra, whereas the particle reduction is
realized via two objects: p-particle operator ̺p and the
result of tracing out p particles, Φp(̺). As a byprod-
uct, we have analyzed the density matrix formalism for
general case of fermionic states and provided the explicit
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construction of density matrices (Corollary 2 and Exam-
ple 1). The developed formalism clearly indicates that the
conventional partial trace methods are not applicable to
fermionic states.
We have addressed the problem of finding general pure

fermionic states such that their mode-reduced density
matrices are equispectral. Equispectrality automatically
takes place for bosonic systems and systems of distinguish-
able particles, however, it does not necessarily hold true
for systems composed of indistinguishable fermionic quasi-
particles. On the other hand, equispectrality is a natural
quantum information property that reflects the fact that
entropies of subsystems must coincide.
For mode-reduced states, we have found necessary and

sufficient conditions for their spectra to be identical. The
results of Proposition 3 and Theorem 2 can also be in-
terpreted as the construction of valid purifications for
fermionic density operators. Purification is a frequently
used tool in quantum information theory, and we believe
that these results may turn out to be useful in character-
ization of fermionic channels.
For particle-reduced states, we have shown that Φp(̺) is

a valid reduction, which coincides with ̺N−p if the state ̺
has exactly N particles. Basing on the examples, we have
conjectured that spectra of ̺p and Φp(̺) coincide not only
for N -particle states but also for a general fermionic pure
state ̺. We have demonstrated that the natural occupa-
tion numbers λ1 ≥ . . . ≥ λn (spectrum of 1-RDM) must
obey generalized Pauli constraints not only for N -particle
states but also for states satisfying the parity superse-

lection rule. For instance, even parity two-mode states
necessarily satisfy λ1 = λ2, odd parity two-mode states
have λ2 = 0, and odd parity three-mode states fulfil the
requirements λ1 = 1, λ2 = λ3. The generalization of these
constraints is a problem for a future research.
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[3] Pauli, W.: Über den Einflußder
Geschwindigkeitsabhängigkeit der Elektronenmasse
auf den Zeemaneffekt. Zeitschrift für Physik 31, 373
(1925)

[4] Uhlenbeck, G.E., Goudsmit, S.: Zuschriften und
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H.N., Salas-Brito, A.L.: Limitations on the superposition
principle: superselection rules in non-relativistic quantum
mechanics. Eur. J. Phys. 19, 237 (1998)

[15] Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference
frames, superselection rules, and quantum information.
Rev. Mod. Phys. 79, 555 (2007)

[16] Hegerfeldt, G.C., Kraus, K., Wigner, E.P.: Proof of the
fermion superselection rule without the assumption of
time-reversal invariance. J. Math. Phys. 9, 2029 (1968)

[17] Bargman, V.: On unitary ray representations of continu-
ous groups. Ann. Math. 59, 1 (1954)

[18] Gonzalez-Garcia, M.C., Maltoni, M.: Phenomenology
with massive neutrinos. Phys. Rep. 460, 1 (2008)

[19] Pontecorvo, B.: Neutrino experiments and the problem of
conservation of leptonic charge. Sov. Phys. JETP 26, 984
(1968)

[20] Xu, S.-Y., et al.: Discovery of a Weyl fermion semimetal
and topological Fermi arcs. Science 349, 613 (2015)

[21] Lu, L., et al.: Experimental observation of Weyl points.
Science 349, 622 (2015)

[22] Xu, S.-Y., et al.: Discovery of a Weyl fermion state with
Fermi arcs in niobium arsenide. Nature Physics 11, 748
(2015)

[23] Tsvelik, A.M.: Quantum Field Theory in Condensed Mat-
ter Physics, 2nd ed. Cambridge University Press, Cam-
bridge (2003)

[24] Moriya, H.: Some aspects of quantum entanglement for
CAR systems. Lett. Math. Phys. 60, 109 (2002)

[25] Araki, H., Lieb, E.H.: Entropy inequalities. Commun.
Math. Phys. 18, 160 (1970)



8

[26] Friis, N., Lee, A.R., Bruschi, D.E.: Fermionic-mode en-
tanglement in quantum information. Phys. Rev. A 87,
022338 (2013)

[27] Friis, N.: Reasonable fermionic quantum information the-
ories require relativity. New J. Phys. 18, 033014 (2016)

[28] Carlson, B.C., Keller, J.M.: Eigenvalues of density matri-
ces. Phys. Rev. 121, 659 (1961)

[29] Coleman, A.J.: Structure of fermion density matrices.
Rev. Mod. Phys. 35, 668 (1963)

[30] Ando, T.: Properties of fermion density matrices. Rev.
Mod. Phys. 35, 690 (1963)

[31] Mazziotti, D.A.: Structure of fermionic density matrices:
Complete N-representability conditions. Phys. Rev. Lett.
108, 263002 (2012)

[32] Borland, R.E., Dennis, K.: The conditions on the one-
matrix for three-body fermion wavefunctions with one-
rank equal to six. J. Phys. B 5, 7 (1972)

[33] Schilling, C., Gross, D., Christandl, M.: Pinning of
fermionic occupation numbers. Phys. Rev. Lett. 110,
040404 (2013)

[34] Benavides-Riveros, C.L., Springborg, M.: Quasipinning
and selection rules for excitations in atoms and molecules.
Phys. Rev. A 92, 012512 (2015)

[35] Schilling, C.: Hubbard model: Pinning of occupation
numbers and role of symmetries. Phys. Rev. B 92, 155149
(2015)

[36] Cahill, K.E., Glauber, R.J.: Density operators for
fermions. Phys. Rev. A 59, 1538 (1999)

[37] Bravyi, S.: Classical capacity of fermionic product chan-
nels. ArXiv: quant-ph//0507282

[38] Fannes, M., Van Ryn, N.: Connecting the von Neumann
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