Skip to main content
Log in

Compact quantum gates for hybrid photon–atom systems assisted by Faraday rotation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present some compact circuits for a deterministic quantum computing on the hybrid photon–atom systems, including the Fredkin gate and SWAP gate. These gates are constructed by exploiting the optical Faraday rotation induced by an atom trapped in a single-sided optical microcavity. The control qubit of our gates is encoded on the polarization states of the single photon, and the target qubit is encoded on the ground states of an atom confined in an optical microcavity. Since the decoherence of the flying qubit with atmosphere for a long distance is negligible and the stationary qubits are trapped inside single-sided microcavities, our gates are robust. Moreover, ancillary single photon is not needed and only some linear-optical devices are adopted, which makes our protocols efficient and practical. Our schemes need not meet the condition that the transmission for the uncoupled cavity is balanceable with the reflectance for the coupled cavity, which is different from the quantum computation with a double-sided optical microcavity. Our calculations show that the fidelities of the two hybrid quantum gates are high with the available experimental technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)

    Article  ADS  MATH  Google Scholar 

  2. Long, G.L., Xiao, L.: Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A 69, 052303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  3. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    Article  ADS  Google Scholar 

  4. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  5. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)

    Article  ADS  Google Scholar 

  6. Wei, H.R., Deng, F.G.: Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep. 4, 7551 (2014)

    Article  ADS  Google Scholar 

  7. Wang, T.J., Wang, C.: Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phy. Rev. A 90, 052310 (2014)

    Article  ADS  Google Scholar 

  8. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)

    Article  ADS  Google Scholar 

  9. Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computing with coupled quantum dots. Sci. Rep. 4, 4623 (2014)

    ADS  Google Scholar 

  10. Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91, 032328 (2015)

    Article  ADS  Google Scholar 

  11. Wei, H.R., Deng, F.G., Long, G.L.: Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. Opt. Express 24, 18619–18630 (2016)

    Article  ADS  Google Scholar 

  12. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  13. Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)

    Article  ADS  Google Scholar 

  14. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  15. Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)

    Article  ADS  Google Scholar 

  16. Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)

    Article  ADS  Google Scholar 

  17. Beenakker, C.W.J., DiVincenzo, D.P., Emary, C., Kindermann, M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)

    Article  ADS  Google Scholar 

  18. Yamamoto, T., Pashkin, Y.A., Astafiev, O., Nakamura, Y., Tsai, J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature (London) 425, 941–944 (2003)

    Article  ADS  Google Scholar 

  19. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature (London) 453, 1031–1042 (2008)

    Article  ADS  Google Scholar 

  20. Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)

    Article  ADS  Google Scholar 

  21. Shende, V.V., Markov, I.L., Bullock, S.S.: Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A 69, 062321 (1995)

    Article  ADS  Google Scholar 

  22. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shi, Y.Y.: Both Toffoli and controlled-NOT need little help to do universal quantum computing. Quantum Inf. Comput. 3, 84 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Liang, L.M., Li, C.Z.: Realization of quantum SWAP gate between flying and stationary qubits. Phys. Rev. A 72, 024303 (2005)

    Article  ADS  Google Scholar 

  25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  27. Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022307 (2001)

    Article  ADS  Google Scholar 

  28. Dennis, E.: Toward fault-tolerant quantum computation without concatenation. Phys. Rev. A 63, 052314 (2001)

    Article  ADS  Google Scholar 

  29. Cory, D.G., Price, M.D., Maas, W., Knill, E., Laflamme, R., Zurek, W.H., Havel, T.F., Somaroo, S.S.: Experimental quantum error correction. Phys. Rev. Lett. 81, 2152 (1998)

    Article  ADS  Google Scholar 

  30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)

    MATH  Google Scholar 

  31. Vidal, G., Dawson, C.M.: Universal quantum circuit for two-qubit transformations with three controlled-NOT gates. Phys. Rev. A 69, 010301 (2004)

    Article  ADS  Google Scholar 

  32. Heilmann, R., Gräfe, M., Nolte, S., Szameit, A.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60, 96 (2015)

    Article  Google Scholar 

  33. Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141 (2015)

    Article  Google Scholar 

  34. Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109, 100403 (2012)

    Article  ADS  Google Scholar 

  36. Xu, G.F., Long, G.L.: Protecting geometric gates by dynamical decoupling. Phys. Rev. A 90, 022323 (2014)

    Article  ADS  Google Scholar 

  37. Xu, G.F., Long, G.L.: Universal nonadiabatic geometric gates in two-qubit decoherence-free subspaces. Sci. Rep. 4, 6814 (2014)

    Article  ADS  Google Scholar 

  38. Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)

    Article  ADS  Google Scholar 

  39. Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics. Phys. Rev. A 93, 052324 (2016)

    Article  ADS  Google Scholar 

  40. Duan, L.M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)

    Article  ADS  Google Scholar 

  41. Duan, L.M., Kuzmich, A., Kimble, H.J.: Cavity QED and quantum-information processing with hot trapped atoms. Phys. Rev. A 67, 032305 (2003)

    Article  ADS  Google Scholar 

  42. Cho, J., Lee, H.W.: Generation of atomic cluster states through the cavity input–output process. Phys. Rev. Lett. 95, 160501 (2005)

    Article  ADS  Google Scholar 

  43. Boozer, A.D., Boca, A., Miller, R., Northup, T.E., Kimble, H.J.: Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)

    Article  ADS  Google Scholar 

  44. Wei, H., Deng, Z.J., Zhang, X.L., Feng, M.: Transfer and teleportation of quantum states encoded in decoherence-free subspace. Phys. Rev. A 76, 054304 (2007)

    Article  ADS  Google Scholar 

  45. Yang, Z.B., Wu, H.Z., Su, W.J., Zheng, S.B.: Quantum phase gates for two atoms trapped in separate cavities within the null- and single-excitation subspaces. Phys. Rev. A 80, 012305 (2009)

    Article  ADS  Google Scholar 

  46. Wang, C., Zhang, Y., Jiao, R.Z., Jin, G.S.: Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Opt. Express 21, 19252–19260 (2013)

    Article  ADS  Google Scholar 

  47. Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)

    Article  ADS  Google Scholar 

  48. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dotCmicrocavity coupled system. Phys. Rev. A 87, 062337 (2013)

    Article  ADS  Google Scholar 

  49. Wang, H.F., Zhu, A.D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489 (2014)

    Article  ADS  Google Scholar 

  50. Reiserer, A., Kalb, N., Rempe, G., Ritter, S.: A quantum gate between a flying optical photon and a single trapped atom. Nature (London) 508, 237–240 (2014)

    Article  ADS  Google Scholar 

  51. Wei, H.R., Long, G.L.: Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities. Sci. Rep. 5, 12918 (2015)

    Article  ADS  Google Scholar 

  52. Song, L.C., Xia, Y., Jie Song, J.: Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED. Quantum Inform. Process. 14, 511–529 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Peng, Z.H., Kuang, L.M., Zou, J., Zhang, Y.Q., Liu, X.J.: Quantum controlled-not gate in the bad cavity regime. Quantum Inform. Process. 14, 2833–2846 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Bai, C.H., Wang, D.Y., Hu, S., Cui, W.X., Jiang, X.X., Wang, H.F.: Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inform. Process. 15, 1485–1498 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Wang, T.J., Wang, C.: Parallel quantum computing teleportation for spin qubits in quantum dot and microcavity coupled system. IEEE J. Sel. Top. Quantum Electron. 21(3), 6500107 (2015)

    Google Scholar 

  56. Barends, R., Shabani, A., Lamata, L., Kelly, J., Mezzacapo, A., Las Heras, U., Babbush, R., Fowler, A.G., Campbell, B., Chen, Y., Chen, Z., Chiaro, B., Dunsworth, A., Jeffrey, E., Lucero, E., Megrant, A., Mutus, J.Y., Neeley, M., Neill, C., O’Malley, P.J.J., Quintana, C., Roushan, P., Sank, D., Vainsencher, A., Wenner, J., White, T.C., Solano, E., Neven, H., Martinis, J.M.: Digitized adiabatic quantum computing with a superconducting circuit. Nature (London) 534, 222–226 (2016)

    Article  ADS  Google Scholar 

  57. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  58. Chen, C.Y., Feng, M., Gao, K.L.: Toffoli gate originating from a single resonant interaction with cavity QED. Phys. Rev. A 73, 064304 (2006)

    Article  ADS  Google Scholar 

  59. Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)

    Article  ADS  Google Scholar 

  60. Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photon \(\sqrt{SWAP}\) gate using a system. Phys. Rev. A 82, 010301 (2010)

    Article  ADS  Google Scholar 

  61. Wang, T.J., Zhang, Y., Wang, C.: Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities. Laser Phys. Lett. 11, 025203 (2014)

    Article  ADS  Google Scholar 

  62. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  64. Monroe, C.: Quantum information processing with atoms and photons. Nature (London) 416, 238 (2002)

    Article  ADS  Google Scholar 

  65. Chen, Q., Feng, M.: Quantum-information processing in decoherence-free subspace with low-Q cavities. Phys. Rev. A 82, 052329 (2010)

    Article  ADS  Google Scholar 

  66. Wei, H.R., Deng, F.G.: Compact implementation of the \((SWAP)^a\) gate on diamond nitrogen-vacancy centers coupled to resonators. Quantum Inf. Process. 14, 465–477 (2015)

    Article  ADS  MATH  Google Scholar 

  67. Fortier, K.M., Kim, Y., Gibbons, M.J., Ahmadi, P., Chapman, M.S.: Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007)

    Article  ADS  Google Scholar 

  68. Wilk, T., Webster, S.C., Kuhn, A., Rempe, G.: Single-atom single-photon quantum interface. Science 317, 488 (2007)

    Article  ADS  Google Scholar 

  69. Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science 342, 1349 (2013)

    Article  ADS  Google Scholar 

  70. Siyushev, P., Stein, G., Wrachtrup, J., Gerhardt, I.: Molecular photons interfaced with alkali atoms. Nature (London) 509, 66 (2014)

    Article  ADS  Google Scholar 

  71. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  72. An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input–output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)

    Article  ADS  Google Scholar 

  73. Bastos, W.P., Cardoso, W.B., Avelar, A.T., de Almeida, N.G., Baseia, B.: Controlled teleportation via photonic Faraday rotations in low-Q cavities. Quantum Inf. Process. 11, 1867 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012)

    Article  ADS  Google Scholar 

  75. Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12, 1885 (2013)

    Article  ADS  MATH  Google Scholar 

  76. Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. J. Opt. Soc. Am. B 30, 678 (2013)

    Article  ADS  Google Scholar 

  77. Zhou, L., Wang, X.F., Sheng, Y.B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. 53, 1752–1766 (2014)

    Article  MATH  Google Scholar 

  78. Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express 21, 17671–17685 (2013)

    Article  ADS  Google Scholar 

  79. Dayan, B., Parkins, A.S., Takao, Aoki, Ostby, E.P., Vahala, K.J., Kimble, Hj: A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)

    Article  ADS  Google Scholar 

  80. Chiesa, A., Gerace, D., Troiani, F., Amoretti, G., Santini, P., Carretta, S.: Robustness of quantum gates with hybrid spin-photon qubits in superconducting resonators. Phys. Rev. A 89, 052308 (2014)

    Article  ADS  Google Scholar 

  81. Bonato, C., Haupt, F., Oemrawsingh, S.S., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  82. Carretta, S., Chiesa, A., Troiani, F., Gerace, D., Amoretti, G., Santini, P.: Quantum information processing with hybrid spin-photon qubit encoding. Phys. Rev. Lett. 111, 110501 (2013)

    Article  ADS  Google Scholar 

  83. Luo, M.X., Ma, S.Y., Chen, X.B., Wang, X.J.: Hybrid Toffoli gate on photons and quantum spins. Sci. Rep. 5, 16716 (2015)

    Article  ADS  Google Scholar 

  84. Pritchard, J.D., Isaacs, J.A., Beck, M.A., McDermott, R., Saffman, M.: Hybrid atom–photon quantum gate in a superconducting microwave resonator. Phys. Rev. A 89, 010301(R) (2014)

    Article  ADS  Google Scholar 

  85. Wang, G.Y., Liu, Q., Wei, H.R., Li, T., Ai, Q., Deng, F.G.: Universal quantum gates for photon–atom hybrid systems assisted by bad cavities. Sci. Rep. 6, 24183 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11174040 and 11475021, and the National Key Basic Research Program of China under Grant No. 2013CB922000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, GZ., Yang, GJ. & Zhang, M. Compact quantum gates for hybrid photon–atom systems assisted by Faraday rotation. Quantum Inf Process 16, 54 (2017). https://doi.org/10.1007/s11128-016-1478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1478-6

Keywords

Navigation