Skip to main content
Log in

Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger–Horne–Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. IEEE, New York (1984)

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Pinheiro, P.V.P., Ramos, R.V.: Two-layer quantum key distribution. Quantum Inf. Process. 14, 2111–2124 (2015)

    Article  ADS  MATH  Google Scholar 

  7. Hillery, M., Buz̆ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  9. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  11. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light: Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  12. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  13. Li, X.H.: Quantum secure direct communication. Acta Phys. Sin. 64, 160307 (2015)

    Google Scholar 

  14. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  15. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  16. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)

    Article  ADS  Google Scholar 

  17. Boileau, J.C., Laflamme, R., Laforest, M., Myers, C.R.: Robust quantum communication using a polarization-entangled photon pairs. Phys. Rev. Lett. 93, 220501 (2004)

    Article  ADS  Google Scholar 

  18. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  19. Kalamidas, D.: Single-photon quantum error rejection and correction with linear optics. Phys. Lett. A 343, 331–335 (2005)

    Article  ADS  MATH  Google Scholar 

  20. Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)

    Article  ADS  Google Scholar 

  21. Yamamoto, T., Shimamura, J., Ödemir, S.K., Koashi, M., Imoto, N.: Faithful qubit distribution assisted by one additional qubit against collective noise. Phys. Rev. Lett. 95, 040503 (2005)

    Article  ADS  Google Scholar 

  22. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  23. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  24. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  25. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  26. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83, 062316 (2011)

    Article  ADS  Google Scholar 

  27. Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)

    Article  ADS  Google Scholar 

  28. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  ADS  Google Scholar 

  29. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  30. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012)

    Article  ADS  Google Scholar 

  31. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    Article  ADS  Google Scholar 

  32. Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A 91, 062321 (2015)

    Article  ADS  Google Scholar 

  33. Xia, Y., Chen, Q.Q., Song, J., Song, H.S.: Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1029 (2012)

    Article  ADS  Google Scholar 

  34. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)

    Article  ADS  Google Scholar 

  35. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    Article  ADS  Google Scholar 

  36. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  37. Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Express 23, 9284–9294 (2015)

    Article  ADS  Google Scholar 

  38. Mi, S.C., Wang, C., Wang, T.J.: Hyperentanglement purification with linear optics assisted by W-states. Quantum Inf. Process. 14, 623–634 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  40. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum dot spins inside optical microcavities. Opt. Express 22, 6547–6561 (2014)

    Article  ADS  Google Scholar 

  41. Ren, B.C., Long, G.L.: Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Sci. Rep. 5, 16444 (2015)

    Article  ADS  Google Scholar 

  42. Li, X.H., Ghose, S.: Hyperconcentration for multipartite entanglement via linear optics. Laser Phys. Lett. 11, 125201 (2014)

    Article  ADS  Google Scholar 

  43. Li, X.H., Ghose, S.: Hyperentanglement concentration for time-bin and polarization hyperentangled photons. Phys. Rev. A 91, 062302 (2015)

    Article  ADS  Google Scholar 

  44. Li, X.H., Ghose, S.: Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity. Opt. Express 23, 3550–3562 (2015)

    Article  ADS  Google Scholar 

  45. Cao, C., Wang, T.J., Mi, S.C., Zhang, R., Wang, C.: Nonlocal hyperconcentration on entangled photons using photonic module system. Ann. Phys. 369, 128–138 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  46. Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf. Process. 13, 1967–1978 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Liu, H.J., Xia, Y., Song, J.: Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf. Process. 15, 2033–2052 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Li, T., Deng, F.G., Wang, G.Y., Long, G.L.: Deterministic error correction for nonlocal spatial polarization hyperentanglement. Sci. Rep. 6, 20677 (2016)

    Article  ADS  Google Scholar 

  49. Kalamidas, D.: Linear optical scheme for error-free entanglement distribution and a quantum repeater. Phys. Rev. A 73, 054304 (2006)

    Article  ADS  Google Scholar 

  50. Takesue, H.: Entangling time-bin qubits with a switch. Phys. Rev. A 89, 062328 (2014)

    Article  ADS  Google Scholar 

  51. Chen, T.Y., Zhang, J., Boileau, J.C., Jin, X.M., Yang, B., Zhang, Q., Yang, T., Laflamme, R., Pan, J.W.: Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504 (2006)

    Article  ADS  Google Scholar 

  52. Honjo, T., Nam, S.W., Takesue, H., Zhang, Q., Kamada, H., Nishida, Y., Tadanaga, O., Asobe, M., Baek, B., Hadfield, R.H., Miki, S., Fujiwara, M., Sasaki, M., Wang, Z., Inoue, K., Yamamoto, Y.: Long-distance entanglement-based quantum key distribution over optical fiber. Opt. Express 16, 19118–19126 (2008)

    Article  ADS  Google Scholar 

  53. Yamamoto, T., Hayashi, K., Oezdemir, S.K., Koashi, M., Imoto, N.: Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace. Nature Photon. 2, 488–491 (2008)

    Article  Google Scholar 

  54. Ikuta, R., Ono, Y., Tashima, T., Yamamoto, T., Koashi, M., Imoto, N.: Efficient decoherence-free entanglement distribution over lossy quantum channels. Phys. Rev. Lett. 106, 110503 (2011)

    Article  ADS  Google Scholar 

  55. Gu, B., Xu, F., Ding, L.G., Zhang, Y.N.: High-capacity three-party quantum secret sharing with hyperentanglement. Int. J. Theor. Phys. 51, 3559–3566 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Song, S.Y., Cao, Y., Sheng, Y.B., Long, G.L.: Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement. Quantum Inf. Process. 12, 381–393 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Fan, L.L., Yan, X., Song, J.: Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf. Process. 13, 1967–1978 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Sheng, Y.B., Guo, R., Pan, J., Zhou, L., Wang, X.F.: Two-step measurement of the concurrence for hyperentangled state. Quantum Inf. Process. 14, 963–978 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Liu, D., Zong, Z.C., Ma, W.: High-capacity quantum secret sharing with hyperdense coding assisted by hyperentangled photon pairs. Int. J. Theor. Phys. 52, 2245–2254 (2013)

    Article  MathSciNet  Google Scholar 

  60. Wang, C., Ma, H.Q., Jiao, R.Z., Zhang, Y.: An improved quantum repeater protocol using hyperentangled state purification. Eur. Phys. J. D 64, 573–578 (2011)

    Article  ADS  Google Scholar 

  61. Wang, H.B., Huang, Y.G., Fang, X., Gu, B., Fu, D.S.: High-capacity three-party quantum secret sharing with single photons in both the polarization and the spatial-mode degrees of freedom. Int. J. Theor. Phys. 52, 1043–1051 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. Gu, B., Zhang, C.Y., Cheng, G.S., Huang, Y.G.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54, 942–947 (2011)

    Article  ADS  Google Scholar 

  63. Lu, P.M., Xia, Y., Song, J.: Efficient W polarization state distribution over an arbitrary collective-noise channel with cross-Kerr nonlinearity. Opt. Commun. 284, 5866–5870 (2011)

    Article  ADS  Google Scholar 

  64. Xia, Y., Fan, L.L., Hao, S.Y., He, J., Song, J., Wei, R.S., Huang, L.Q.: Efficient nonlocal entangled state distribution over the collective-noise channel. Quantum Inf. Process. 12, 3553–3568 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Lai, H., Orgun, M.A., Xiao, J.H., Xue, L.Y.: Fault-tolerant high-capacity quantum key distribution over a collective-noise channel using extended unitary operations. Quantum Inf. Process. 13, 1523–1535 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Dong, L., Wang, J.X., Shen, H.Z., Li, D., Xiu, X.M., Gao, Y.J., Yi, X.X.: Deterministic transmission of an arbitrary single-photon polarization state through bit-flip error channel. Quantum Inf. Process. 13, 1413–1424 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Xiu, X.M., Li, Q.Y., Dong, L., Shen, H.Z., Li, D., Gao, Y.J., Yi, X.X.: Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels. Quantum Inf. Process. 14, 361–372 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141 (2015)

    Article  Google Scholar 

  69. Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14, 1487–1499 (2015)

    Article  ADS  MATH  Google Scholar 

  70. Dong, L., Wang, J.X., Li, Q.Y., Shen, H.Z., Dong, H.K., Xiu, X.M., Ren, Y.P., Gao, Y.J.: Quantum secure direct communication against the collective noise with polarization-entangled Bell states. Prog. Theor. Exp. Phys. 12, 123A02 (2015)

    Article  Google Scholar 

  71. Huang, W., Wen, Q.Y., Liu, B., Gao, F.: Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels. Chin. Phys. B. 24, 070308 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11674033 and 11474026 and the Fundamental Research Funds for the Central Universities under Grant No. 2015KJJCA01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Guo Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, CY., Wang, GY., Zhang, H. et al. Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels. Quantum Inf Process 16, 11 (2017). https://doi.org/10.1007/s11128-016-1482-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1482-x

Keywords

Navigation