Skip to main content
Log in

Comparison of quantum discord and fully entangled fraction of two classes of \(d\otimes d^2\) states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantumness of a generic state is the resource of many applications in quantum information theory, and it is interesting to survey the measures which are able to detect its trace in the properties of the state. In this work, we study the quantum discord and fully entangled fraction of two classes of bipartite states and compare their behaviors. These classes are complements to the \(d\otimes d\) Werner and isotropic states, in the sense that each class possesses the same purification as the corresponding complemental class of states. Our results show that maximally entangled mixed states are also maximally discordant states, leading to a generalization of the well-known fact that all maximally entangled pure states have also maximum quantum discord. Moreover, it is shown that the separability-entanglement boundary of a Werner or isotropic state is manifested as an inflection point in the diagram of quantum discord of the corresponding complemental state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielssen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodeck, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  4. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  5. Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zhao, M.-J.: Maximally entangled states and fully entangled fraction. Phys. Rev. A 91, 012310 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Grondalski, J., Etlinger, D.M., James, D.F.V.: The fully entangled fraction as an inclusive measure of entanglement applications. Phys. Lett. A 300, 573–580 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zhou, Z.-W., Guo, G.-C.: Disentanglement and inseparability correlation in a two-qubit system. Phys. Rev. A 61, 032108 (2000)

    Article  ADS  Google Scholar 

  12. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  14. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  15. Okrasa, M., Walczak, Z.: Quantum discord and multipartite correlations. EPL 96, 60003 (2011)

    Article  ADS  Google Scholar 

  16. Xu, J.: Analytical expressions of global quantum discord for two classes of multi-qubit states. Phys. Lett. A 377, 238–242 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Doronin, S.I., Fel’dman, E.B., Kuznetsova, E.I.: Contributions of different parts of spin–spin interactions to quantum correlations in a spin ring model in an external magnetic field. Quantum Inf. Process. 14, 2929–2943 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Luo, S.: Entanglement as minimal discord over state extensions. Phys. Rev. A 94, 032129 (2016)

    Article  ADS  Google Scholar 

  19. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. Shi, M., Yang, W., Jiang, F., Du, J.: Quantum discord of two-qubit rank-2 states. J. Phys. A Math. Theor. 44(41), 415304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)

    Article  ADS  Google Scholar 

  22. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1(1), 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Terhal, B.M., Vollbrecht, K.G.H.: Entanglement of formation for isotropic states. Phys. Rev. Lett. 85, 2625 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Javad Akhtarshenas.

Appendix: Proof for Lemma 1

Appendix: Proof for Lemma 1

Proof

We provide a proof for \(2\otimes 4\) complemental state of a \(2\otimes 2\) Werner state. The generalization to higher dimensions is straightforward. The states (46) and (47) can be rewritten as follows

$$\begin{aligned} |\Psi _1\rangle= & {} \cos \alpha |11\rangle +\sin \alpha |2\rangle \left( \cos \theta |3\rangle -\sin \theta |4\rangle \right) , \end{aligned}$$
(57)
$$\begin{aligned} |\Psi _2\rangle= & {} \cos \alpha |22\rangle +\sin \alpha |1\rangle \left( \cos \theta |3\rangle +\sin \theta |4\rangle \right) . \end{aligned}$$
(58)

Having a glance of the above states, one can easily infer that the two maximally entangles states which maximize the fully entangled fraction of the state (45) should be in the following form

$$\begin{aligned} |\psi _1^{\max }\rangle= & {} \frac{1}{\sqrt{2}}|1\rangle \left( \cos \gamma |1\rangle -\sin \gamma |2\rangle \right) +\frac{1}{\sqrt{2}}|2\rangle \left( \cos \gamma ^\prime |3\rangle -\sin \gamma ^\prime |4\rangle \right) ,\end{aligned}$$
(59)
$$\begin{aligned} |\psi _2^{\max }\rangle= & {} \frac{1}{\sqrt{2}}|2\rangle \left( \cos \gamma |1\rangle +\sin \gamma |2\rangle \right) +\frac{1}{\sqrt{2}}|1\rangle \left( \cos \gamma ^\prime |3\rangle +\sin \gamma ^\prime |4\rangle \right) . \end{aligned}$$
(60)

Now using the Eq. (2) we have

$$\begin{aligned} \mathcal {F}=\max _{\{\gamma ,\gamma ^\prime \}}\left\{ \langle \psi _1^{\max }|\rho |\psi _1^{\max }\rangle +\langle \psi _2^{\max }|\rho |\psi _2^{\max }\rangle \right\} , \end{aligned}$$
(61)

which results to

$$\begin{aligned} \mathcal {F}=\frac{1}{4}\max _{\{\gamma ,\gamma ^\prime \}}\left( f_1+f_2\right) , \end{aligned}$$
(62)

where

$$\begin{aligned} f_1= & {} \left( \cos \gamma \cos \alpha +\sin \alpha \cos \theta \cos \gamma ^\prime +\sin \alpha \sin \theta \sin \gamma ^\prime \right) ^2, \end{aligned}$$
(63)
$$\begin{aligned} f_2= & {} \left( \cos \gamma \cos \alpha +\sin \alpha \cos \theta \sin \gamma ^\prime +\sin \alpha \sin \theta \cos \gamma ^\prime \right) ^2. \end{aligned}$$
(64)

It is easy to show that the maximum will be reached at \(\gamma =0\) and \(\gamma ^\prime =\frac{\pi }{4}\) for an arbitrary \(\alpha \) and \(\theta \). The proof is completed and could be generalized to the higher dimensions in a straightforward procedure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behdani, J., Akhtarshenas, S.J. & Sarbishaei, M. Comparison of quantum discord and fully entangled fraction of two classes of \(d\otimes d^2\) states. Quantum Inf Process 16, 3 (2017). https://doi.org/10.1007/s11128-016-1486-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1486-6

Keywords

Navigation