Skip to main content
Log in

Quantum phase transition, quantum fidelity and fidelity susceptibility in the Yang–Baxter system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the ground-state fidelity and fidelity susceptibility in the many-body Yang–Baxter system and analyze their connections with quantum phase transition. The Yang–Baxter system was perturbed by a twist of \( e^{i\varphi } \) at each bond, where the parameter \( \varphi \) originates from the q-deformation of the braiding operator U with \(q = e^{-i\varphi }\) (Jimbo in Yang–Baxter equations in integrable systems, World Scientific, Singapore, 1990), and \( \varphi \) has a physical significance of magnetic flux (Badurek et al. in Phys. Rev. D 14:1177, 1976). We test the ground-state fidelity related by a small parameter variation \(\varphi \) which is a different term from the one used for driving the system toward a quantum phase transition. It shows that ground-state fidelity develops a sharp drop at the transition. The drop gets sharper as system size N increases. It has been verified that a sufficiently small value of \(\varphi \) used has no effect on the location of the critical point, but affects the value of \( F(g_{c},\varphi ) \). The smaller the twist \(\varphi \), the more the value of \( F(g_{c},\varphi ) \) is close to 0. In order to avoid the effect of the finite value of \( \varphi \), we also calculate the fidelity susceptibility. Our results demonstrate that in the Yang–Baxter system, the quantum phase transition can be well characterized by the ground-state fidelity and fidelity susceptibility in a special way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Quan, H.T., Song, Z., Liu, X.F., Zanardi, P., Sun, C.P.: Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 96, 140604 (2006)

    Article  ADS  Google Scholar 

  3. Zanardi, P., Paunkovic, N.: Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Zanardi, P., Cozzini, M., Giorda, P.: Ground state fidelity and quantum phase transitions in free Fermi systems. J. Stat. Mech. Theory Exp. 2007, L02002 (2007)

  5. Cozzini, M., Giorda, P., Zanardi, P.: Quantum phase transitions and quantum fidelity in free fermion graphs. Phys. Rev. B 75, 014439 (2007)

    Article  ADS  MATH  Google Scholar 

  6. Cozzini, M., Ionicioiu, R., Zanardi, P.: Quantum fidelity and quantum phase transitions in matrix product states. Phys. Rev. B 76, 104420 (2007)

    Article  ADS  Google Scholar 

  7. Zanardi, P., Quan, H.T., Wang, X., Sun, C.P.: Mixed-state fidelity and quantum criticality at finite temperature. Phys. Rev. A 75, 032109 (2007)

    Article  ADS  Google Scholar 

  8. Buonsante, P., Vezzani, A.: Ground-state fidelity and bipartite entanglement in the Bose–Hubbard model. Phys. Rev. Lett. 98, 110601 (2007)

    Article  ADS  Google Scholar 

  9. Zanardi, P., Giorda, P., Cozzini, M.: Information-theoretic differential geometry of quantum phase transitions. Phys. Rev. Lett. 99, 100603 (2007)

    Article  ADS  MATH  Google Scholar 

  10. Gu, S.J., Kwok, H.M., Ning, W.Q., Lin, H.Q.: Fidelity susceptibility, scaling, and universality in quantum critical phenomena. Phys. Rev. B 77, 245109 (2008)

    Article  ADS  Google Scholar 

  11. Yang, S., Gu, S.J., Sun, C.P., Lin, H.Q.: Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model. Phys. Rev. A 78, 012304 (2008)

    Article  ADS  Google Scholar 

  12. Gu, S.-J.: Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Albuquerque, A.F., Alet, F., Sire, C., Capponi, S.: Quantum critical scaling of fidelity susceptibility. Phys. Rev. B 81, 064418 (2010)

    Article  ADS  Google Scholar 

  14. Gong, L.Y., Tong, P.Q.: Fidelity, fidelity susceptibility, and von Neumann entropy to characterize the phase diagram of an extended Harper model. Phys. Rev. B 78, 115114 (2008)

    Article  ADS  Google Scholar 

  15. You, W.-L., Li, Y.-W., Gu, S.-J.: Fidelity, dynamic structure factor, and susceptibility in critical phenomen. Phys. Rev. E 76, 022101 (2007)

    Article  ADS  Google Scholar 

  16. Zhou, H.Q., Orus, R., Vidal, G.: Ground state fidelity from tensor network representations. Phys. Rev. Lett. 100, 080601 (2008)

    Article  ADS  Google Scholar 

  17. Paunkovic, N., Sacramento, P.D., Nogueira, P., Vieira, V.R., Dugaev, V.K.: Fidelity between partial states as a signature of quantum phase transitions. Phys. Rev. A 77, 052302 (2008)

    Article  ADS  Google Scholar 

  18. Sun, W.-Y., Shi, J.-D., Wang, D., Ye, L.: Exploring the global entanglement and quantum phase transition in the spin \(1/2\, XXZ\) model with Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 15, 245–253 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Sun, W.-Y., Xu, S., Liu, C.-C.: Negativity and quantum phase transition in the spin model using the quantum renormalization-group method. Int. J. Theor. Phys. doi:10.1007/s10773-015-2890-x

  20. Wang, D., Hu, Y.-D., Wang, Z.-Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and fourparticle \(W\)-class entangled states. Quantum Inf. Process. 14(6), 2135–2151 (2015)

    Article  ADS  MATH  Google Scholar 

  21. Nilesen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  22. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  23. Campos Venuti, L., Zanardi, P.: Quantum critical scaling of the geometric tensors. Phys. Rev. Lett. 99, 095701 (2007)

    Article  ADS  Google Scholar 

  24. De Grandi, C., Polkovnikov, A., Sandvik, A.W.: Universal nonequilibrium quantum dynamics in imaginary time. Phys. Rev. B 84, 224303 (2011)

    Article  ADS  Google Scholar 

  25. Mukherjee, V., Polkovnikov, A., Dutta, A.: Oscillating fidelity susceptibility near a quantum multicritical point. Phys. Rev. B 83, 075118 (2011)

    Article  ADS  Google Scholar 

  26. Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yang, C.N.: S matrix for the one-dimensional N-body problem with repulsive or attractive \(\delta \)-function interaction. Phys. Rev. 168, 1920 (1968)

    Article  ADS  Google Scholar 

  28. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  29. Baxter, R.J.: Partition funtion of the eighy-vertex lattice model. Ann. Phys. 70, 193 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  30. Drinfeld, V.G.: Hopf algebras and the quantum Yang–Baxter equation. Sov. Math. Dokl. 32, 254–258 (1985)

    Google Scholar 

  31. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kauffman, L.H., Lomonaco Jr., S.J.: Braiding operators are universal quantum gates. J. New J. Phys. 6, 134 (2004)

    Article  Google Scholar 

  33. Franko, J.M., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15, 413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, Y., Kauffman, L.H., Ge, M.L.: Universal quantum gate, Yang–Baxterization and Hamiltonian. Int. J. Quant. Inf. 3, 669 (2005)

    Article  MATH  Google Scholar 

  35. Zhang, Y., Ge, M.L., States, G.H.Z.: Almost-complex structure and Yang–Baxter equation. Quantum Inf. Process. 6, 363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, Y., Rowell, E.C., Wu, Y.S., Wang, Z.H., Ge, M.L.: From extraspecial two-groups to GHZ states. e-print quant-ph/0706.1761 (2007)

  37. Chen, J.L., Xue, K., Ge, M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A 76, 042324 (2007)

    Article  ADS  Google Scholar 

  38. Chen, J.L., Xue, K., Ge, M.L.: Berry phase and quantum criticality in Yang–Baxter systems. Ann. Phys. 323, 2614 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Chen, J.L., Xue, K., Ge, M.L.: All pure two-qudit entangled states generated via a universal Yang—Baxter Matrix assisted by local unitary transformations. Chin. Phys. Lett. 26(8), 080306 (2009)

  40. Hu, T., Xue, K., Sun, C., Wang, G., Ren, H.: Quantum teleportation and dense coding via topological basis. Quantum Inf. Process. 12(10), 3369–3381 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hu, T., Ren, H., Xue, K.: The topological basis realization and the corresponding XXX spin-1 chain. Quantum Inf. Process. 13(2), 273–282 (2014)

    Article  MATH  Google Scholar 

  42. Hu, T., Ren, H., Xue, K.: The topological basis expression of Heisenberg spin chain. Quantum Inf. Process. 13(2), 401–414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Brylinski, J.L., Brylinski, R.: Universal quantum gates. In: Brylinski, R., Chen, G. (eds.) Mathematics of Quantum Computation. Chapman Hall/CRC Press, Boca Raton (2002)

    Google Scholar 

  44. Wang, G., Xue, K., Wu, C., Liang, H., Oh, C.H.: Entanglement and the Berry phase in a new Yang–Baxter system. J. Phys. A Math. Theor. 42, 125207 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Jones, V.F.R.: Baxterization. Int. J. Mod. Phys. A 6, 2035–3043 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Ge, M.L., Xue, K., Wu, Y.-S.: Explicit trigonometric Yang–Baxterization. Int. J. Mod. Phys. A 6, 3735 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Zhang, Y., Kauffman, L.H., Ge, M.L.: Yang–Baxterizations, universal quantum gates and Hamiltonians. Quantum Inf. Process. 4, 159 (2005)

    Article  MathSciNet  Google Scholar 

  48. Hu, T., Wu, C., Xue, K.: Berry phase and entanglement of three qubits in a new Yang–Baxter system. J. Math. Phys. 50, 083509 (2009)

  49. Hu, T., Sun, C., Xue, K.: The sudden death of entanglement in constructed Yang–Baxter systems. Quantum Inf. Process. doi:10.1007/s11128-009-0125-x

  50. Hu, T., Xue, K., et al.: Method of constructing braid group representation and entanglement in a \(9 \times 9\) Yang–Baxter system. Rev. Math. Phys. 21, 1081–1090 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, G., Xue, K., Sun, C., Hu, T., Zhou, C., Du, G.: Quantum phase transition like phenomenon in a two-qubit Yang–Baxter system. Int. J. Theor. Phys. 49, 2499–2505 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jimbo, M. (ed.): Yang–Baxter Equations in Integrable Systems. Advanced Series in Mathematical Physics, vol. 10. World Scientific, Singapore (1990)

  53. Badurek, G., Rauch, H., Zeilinger, A., Bauspiess, W., Bonse, U.: Phase-shift and spin-rotation phenomena in neutron interferometry. Phys. Rev. D 14, 1177 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSF of China (Grants No. 11305033), the Plan for Scientific and Technological Development of Jilin Province (No. 20160520112JH). T.T.H. was also supported in part by the Government of China through CSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Yang, Q., Xue, K. et al. Quantum phase transition, quantum fidelity and fidelity susceptibility in the Yang–Baxter system. Quantum Inf Process 16, 21 (2017). https://doi.org/10.1007/s11128-016-1487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1487-5

Keywords

Navigation