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Abstract

We employ the conditional version of sandwiched Tsallis relative entropy to determine 1 : N − 1

separability range in the noisy one-parameter families of pseudopure and Werner-like N -qubit

W, GHZ states. The range of the noisy parameter, for which the conditional sandwiched Tsallis

relative entropy is positive, reveals perfect agreement with the necessary and sufficient criteria for

the separability in the 1 : N − 1 partition of these one parameter noisy states.
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I. INTRODUCTION

Entropic characterization of separability in mixed composite states has attracted signifi-

cant attention [1–20]. Nielsen and Kempe [21] brought forth the remarkable feature that the

subsystems of an entangled state may exhibit more disorder than the whole system – unlike

a separable state, which is emphatically more disordered globally than locally. Consequent

to this, the von Neumann conditional entropy S(B|A) = S(ρAB) − S(ρA) of a pure entan-

gled bipartite state is negative. Negative von Neumann conditional entropies would only

offer sufficient but not necessary condition for identifying entanglement in mixed states. For

instance, the two qubit Werner state [22, 23] expressed as ρAB = I4(1 − x)/4 + x |Ψ〉〈Ψ|,
0 ≤ x ≤ 1, |Ψ〉 = 1√

2
(|00〉+|11〉), is known to be separable in the range 0 ≤ x ≤ 1

3
and entan-

gled in the range 1/3 < x ≤ 1. But positive von-Neumann conditional entropy S(B|A) ≥ 0

results in the separability range 0 ≤ x ≤ 0.747 for the two-qubit Werner state. Generalized

conditional entropies, such as Rényi and Tsallis entropies, offer more sophisticated tools to

detect entanglement in mixed composite systems [1–20]. In fact, the conditional version of

the Tsallis entropy

ST
q (A|B) =

1

q − 1

[
1− TrρqAB

TrρqB

]
, (1)

was employed by Abe and Rajagopal [10] to obtain the separability range 0 ≤ x ≤ 1
3
for

the two-qubit Werner state (identified in the limit of q → ∞ for which the conditional

Tsallis entropy ST
q (A|B) is positive). The separability criterion using the Abe-Rajagopal

q-conditional entropy, (AR-criterion) was found to yield separability ranges matching with

the positivity under partial transpose (PPT) criterion [24, 25] in some one-parameter families

of noisy states [17].

Entropic separability criterion received a further impetus recently with the introduction of

the generalized non-commutative conditional sandwiched Tsallis relative entropy (CSTRE),

which is shown [19, 20] to be superior than the Abe-Rajagopal (AR) version of conditional

Tsallis entropy in witnessing entanglement. In fact, the sandwiched (non-commuting) form

of the Rényi relative entropy introduced in Refs. [26–28] led to an analogous sandwiched

form of the Tsallis relative entropy of a density operator ρ and a positive operator σ, given

by [19],

D̃T
q (ρ||σ) =

Tr
{(

σ
1−q

2q ρ σ
1−q

2q

)q}
− 1

q − 1
. (2)
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The Tsallis relative entropy D̃T
q (ρ||σ) is zero if and only if ρ = σ.

The new version of the Tsallis relative entropy D̃T
q (ρ||σ) reduces to the traditional relative

Tsallis entropy DT
q (ρ||σ)

DT
q (ρ||σ) =

Tr [ρq σ1−q]− 1

q − 1
(3)

when ρ and σ commute with each other.

Based on the generalized non-commutative version D̃T
q (ρ||σ) of the Tsallis relative en-

tropy, one obtains the corresponding CSTRE to be of the form, D̃T
q (ρAB||IA ⊗ ρB) of a

composite bipartite state ρAB and the positive operator IA ⊗ ρB (where ρB is the subsys-

tem state ρB = TrA[ρAB], and IA denotes the identity matrix in the Hilbert space of the

subsystem A) as [19],

D̃T
q (ρAB||IA ⊗ ρB) =

Q̃q (ρAB||IA ⊗ ρB)− 1

1− q
. (4)

Here, we have denoted,

Q̃q (ρAB||IA ⊗ ρB) = Tr
{[

(IA ⊗ ρB)
1−q

2q ρAB (IA ⊗ ρB)
1−q

2q

]q}
=
∑

i

λq
i ,

where λi are the eigenvalues of the sandwiched matrix (IA ⊗ ρB)
1−q

2q ρAB (IA ⊗ ρB)
1−q

2q . Non

positive values of the CSTRE D̃T
q (ρAB||IA ⊗ ρB) with q > 1, i.e.,

D̃T
q (ρAB||IA ⊗ ρB) =

(
∑

i λ
q
i )− 1

1− q
< 0 (5)

imply entanglement (see Ref. [19, 20]).

When the subsystem ρB is maximally mixed, the CSTRE D̃T
q (ρAB||IA ⊗ ρB) reduces to

the commutative version viz., the AR q-conditional Tsallis entropy ST
q (A|B) of (1). In our

earlier papers [19, 20] we had investigated bipartite separability of one parameter noisy

symmetric multiqubit systems based on the non-positivity of both AR conditional entropy

and the corresponding CSTRE; and we had shown that whenever the subsystem is not

maximally mixed, the CSTRE criterion yields stricter separability range than that obtained

through the commutative AR version. In this article, we extend the CSTRE criterion to

witness entanglement in noisy one parameter families of the N -qubit pseudopure states [29]

and the N -qubit generalizations of Werner-like one parameter states [22] involving W, GHZ

states. We show that the non-commutative CSTRE criterion is both necessary and sufficient

to detect entanglement in the (1 : N − 1) partitions of the one parameter noisy multiqubit

states explored here.
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II. PSEUDOPURE N QUBIT W AND GHZ STATES

The pseudopure (PP) families of states are formed by mixing any pure state with white

noise [29]. They have played a crucial role in demonstrating quantum information processing

possibilities in liquid state NMR spectroscopy [30, 31]. In Ref. [29], different measures of

quantum correlations of bipartite d× d PP states of the form

ρPPφ (x) =
1− x

d2 − 1
[(Id ⊗ Id)− |φ〉〈φ|] + x|φ〉〈φ| (6)

(where |φ〉 is any arbitrary d × d pure entangled state and 0 ≤ x ≤ 1 denotes the noisy

parameter) are examined. Here we investigate entanglement in the (1 : N − 1) bipartition

of the N qubit PP states, constructed using W and GHZ states, based on the CSTRE

approach.

The one parameter family of N -qubit pseudopure states

ρPPWN
(x) =

1− x

2N − 1

(
I⊗N
2 − |WN〉〈WN |

)
+ x|WN〉〈WN |

obtained by considering the pure state |φ〉 in (6) to be the N -qubit W state:

|WN 〉 =
1√
N
[|1102 · · · 0N〉+ |0112 · · ·0N〉+ · · ·+ · · ·+ |010203 · · · 1N〉] (7)

and the d× d matrix Id ⊗ Id replaced by its multiqubit counterpart I⊗N
2 .

We focus on finding the 1 : N −1 separability range of the W family of PP states ρPPWN
(x)

using CSTRE criterion. For this purpose, an evaluation of the eigenvalues λi(x) of the

sandwiched matrix
(
I2 ⊗ σPP

WN−1
(x)
) 1−q

2q

ρPPWN
(x)

(
I2 ⊗ σPP

WN−1
(x)
) 1−q

2q

,

where σPP
WN−1

(x) = Tr1[ρ
PP
WN

(x)] denotes the N − 1 qubit subsystem of ρPPWN
(x), needs to be

carried out. We obtain the following explicit structure of the eigenvalues λi (for N ≥ 3):

λ1 = (2)
1−q

q

(
1− x

2N − 1

) 1

q

,
(
2N − 4

)
fold-degenerate;

λ2 =

(
1− x

2N − 1

)

(2N − 1) +

(∑N
j=3 2

j−1 − 2(N − 2)
)
x

N (2N − 1)




1−q

q

,

λ3 =

(
1− x

2N − 1

)


(N + 1) +

(∑N
j=3 2

j−1 + (N − 2)
(
2N − 2

))
x

N (2N − 1)





1−q

q

, (8)

λ4/5 =
[
N
(
2N − 1

)]−1

q

(
1

2

)[
α a+ β b±

√
(α a + β b)2 + 8N2(2N − 1)x(x− 1) α β

]
.
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where

α =

[
2N − 1 +

(
N∑

j=3

2j−1 − 2(N − 2)

)
x

] 1−q

q

,

β =

[
N + 1 +

(
N∑

j=3

2j−1 + (N − 2)
(
2N − 2

)
)
x

] 1−q

q

,

a = (N − 1) +

(
N∑

j=3

2j−1 −N + 4

)
x, (9)

b = 1 +

(
N∑

j=3

2j−1 + (N − 2)
(
2N − 2

)
+N

)
x.

TABLE I: The comparison of the 1 : N−1 separability range of the state ρPPWN
(x), forN = 3, 4, 5, 6

obtained through different separability criteria.

Number von Neumann AR CSTRE PPT

of conditional q-conditional

qubits (N) entropy entropy

3 0.7390 0.3636 0.3083 0.3083

4 0.6963 0.25 0.1807 0.1807

5 0.6723 0.1621 0.1014 0.1014

6 0.6621 0.1 0.0552 0.0552

Substituting these eigenvalues λi in (5), a numerical estimation of the 1 : N − 1 CSTRE

separability range for N = 3, 4, 5, 6 has been carried out. This results in the separability

range for the noisy parameter x to be (0, 0.3083), (0, 0.1807), (0, 0.1014), (0, 0.0552) in the

1 : 2, 1 : 3, 1 : 4, 1 : 5 partitions of the noisy state ρPPWN
(x) with N = 3, N = 4, N = 5, N = 6

respectively. The results obtained based on the CSTRE, along with the corresponding cut-off

value of the parameter x obtained using the AR- and the PPT criteria are listed in Table I.

This offers a direct comparison of different approaches, each leading to the threshold values

of the parameter x (beyond which the noisy state is found to be entangled). From Table I it

is clearly seen that, for the noisy state ρPPWN
(x), CSTRE provides better separability range
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than the AR-criterion. Moreover, the CSTRE separability range matches identically with

the PPT separability range.

In general, the CSTRE criterion (the inequality (5) in the limit q → ∞) leads to,

0 ≤ x ≤ N +
√
N − 1

N + 2N
√
N − 1

(10)

for the separability range in the (1 : N − 1) partition of the noisy N qubit PP state ρPPWN
(x)

for N ≥ 3. Alternately, in the parameter region

N +
√
N − 1

N + 2N
√
N − 1

< x ≤ 1,

the CSTRE method witnesses entanglement in the (1 : N −1) bipartition of the noisy state.

The PP family of states (see (6)) with the pure entangled state |φ〉 expressed in terms of

the Schmidt co-efficients i.e., | φ 〉 =
∑d

i=1 ui | iAiB〉, with u1 ≥ u2 ≥ · · · ≥ ud ≥ 0 are shown

to be separable iff [29, 32]

0 ≤ x ≤ 1 + u1u2

1 + d2 (u1u2)
(11)

For the PP state ρPPWN
(x) of (7) with (1 : N−1) bipartition under investigation, the Schmidt

coefficients (positive square roots of the eigenvalues of the reduced single qubit subsystem

density matrix) of the N qubit W state are given by,

u1 =

√
N − 1

N
, u2 =

1√
N
. (12)

Substituting (12) and replacing d2 by 2N in (11), we recover the result (10) for the separabil-

ity range. This establishes that the CSTRE approach serves as both necessary and sufficient

to detect entanglement in the (1 : N − 1) partition of the PP state ρPPWN
(x).

We now proceed to investigate the noisy one parameter family of N qubit PP states

ρPPGHZN
(x) given by,

ρPPGHZN
(x) =

1− x

2N − 1

(
I⊗N
2 − |GHZN〉〈GHZN |

)
+ x|GHZN〉〈GHZN |.

where,

|GHZN〉 =
1√
2
(|0102 · · · 0N〉+ |1112 · · · 1N〉) (13)

To find the 1 : N − 1 separability range of ρPPGHZN
(x) using CSTRE ap-

proach, one needs to evaluate the eigenvalues λi of the sandwiched matrix(
I2 ⊗ σPP

GHZN−1
(x)
) 1−q

2q

ρPPGHZN
(x)

(
I2 ⊗ σPP

GHZN−1
(x)
) 1−q

2q

, where σPP
GHZN−1

(x) = Tr1[ρ
PP
GHZN

(x)]
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corresponds to the N − 1 qubit subsystem of ρPPGHZN
(x). The non-zero eigenvalues λi are

given below (for N ≥ 3) in (14):

λ1 =

[
1− x

2N − 1

] [
2 (1− x)

2N − 1

] 1−q

q

; (2N − 4)-fold degenerate

λ2 =

[
1− x

2N − 1

]

3 +

(∑N
j=3 2

j−1
)
x

∑N
j=1 2

j




1−q

q

; 3-fold degenerate

λ3 = x



3 +

(∑N
j=3 2

j−1

)
x

∑N
j=1 2

j




1−q

q

. (14)

Substituting these eigenvalues λi in (5), we numerically evaluate the 1 : N−1 separability

range (beyond which the CSTRE is negative and hence imply entanglement) for specific

cases N = 3, 4, 5, 6. We obtain the result [0, 0.3], [0, 0.1666], [0, 0.0882], [0, 0.0454] as the

separability ranges for the noisy state ρPPGHZN
(x) in its 1 : 2, 1 : 3, 1 : 4, 1 : 5 partitions

with N = 3, 4, 5, 6 respectively. We verify that these results agree with the ones obtained

based on both AR and PPT criteria. It may however be identified that though the CSTRE

and AR criteria result in the same separability threshold for the noisy parameter x, they

approach the cut-off value with different convergence rates, which is depicted in Fig. 1, for

the specific case of N = 6.

In general for any N ≥ 3, we obtain the following bound

0 ≤ x ≤ 3

2N + 2
(15)

in the limit q → ∞, within which the PP state ρPPGHZN
(x) is separable.

This result matches identically with the necessary and sufficient condition (11) for sep-

arability (obtained by substituting the Schmidt coefficients associated with the (1 : N − 1)

partition of the GHZ state i.e., u1 = u2 = 1/
√
2). Thus, the CSTRE method is found to

serve as a necessary and sufficient condition to detect entanglement in the 1 : N−1 partition

of the N qubit PP state ρPPGHZN
(x).
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FIG. 1: (Color Online) Implicit plots of D̃T
q (ρ

PP
GHZN

||I2 ⊗σPP
GHZN−1

) = 0 (dashed line) and the Abe-

Rajagopal q-conditional entropy ST
q (A|B) = 0 (solid line) as a function of q in the 1 : 5 partition

of the state ρPPGHZ6
(x). This demonstrates the relatively slower convergence of the noisy parameter

x to the cut-off value 0.04545 in the case of the CSTRE approach, when compared with that of

the AR method. (The quantities plotted are dimensionless).

III. WERNER-LIKE ONE PARAMETER NOISY FAMILIES OF N QUBIT W

AND GHZ STATES

We consider the N -qubit generalizations of Werner-like one parameter noisy family of

states

ρΦN
(x) = (1− x)

I⊗N
2

2N
+ x |Φ〉 〈Φ| , 0 ≤ x ≤ 1 (16)

and investigate the separability in the (1 : N − 1) partition based on CSTRE approach [33].

When the pure entangled state |Φ〉 corresponds to the N -qubit W state (See (7)), we get

the noisy state

ρWN
(x) = (1− x)

I⊗N
2

2N
+ x |WN 〉 〈WN | . (17)

In order to carry on the task of identifying the 1 : N − 1 separability range of the state

ρWN
(x) via the CSTRE method, we evaluate the 2N eigenvalues λi of the ‘sandwiched’

matrix (I2 ⊗ σWN−1
)
1−q

2q ρWN
(x)(I2 ⊗ σWN−1

)
1−q

2q with σWN−1
(x) = Tr1[ρWN

(x)] and they are

8



given by

λ1 =

(
1− x

2N

)[
1− x

2N−1

] 1−q

q

; (2N − 4) fold-degenerate

λ2 =

(
1− x

2N

)

N +

(∑N
j=3 2

j−2 − (N − 2)
)
x

N 2N−1




1−q

q

;

λ3 =

(
1− x

2N

)

N +

(∑N
j=3 2

j−2 + (N − 2)
(
2N−1 − 1

))
x

N 2N−1




1−q

q

; (18)

λ4/5 =
1

4

(
2N−1N

)−1

q

[
α a + β b±

√
(α a− β b)2 + 22N+2(N − 1)x2 α β

]

where

α =

[
N +

(
N∑

j=3

2j−2 − (N − 2)

)
x

] 1−q

q

,

β =

(
N +

[
N∑

j=3

2j−2 + (N − 2)(2N−1 − 1)

)
x

] 1−q

q

,

a = N +

(
N∑

j=3

2j−2 − (N − 2) + 2N−1

)
x, (19)

b = N +

(
N∑

j=3

2j−2 + 2N−1(2N − 3)− (N − 2)

)
x.

Substituting these eigenvalues in (5), we numerically estimate the separability ranges

in the 1 : 2, 1 : 3, 1 : 4, 1 : 5 bipartitions of the noisy states ρW3
(x), ρW4

(x), ρW5
(x),

ρW6
(x) respectively. We have tabulated (see Table II) the separability threshold value of the

parameter x obtained using CSTRE approach, along with the corresponding results from

PPT criteria and also those inferred via the positivity of the corresponding von Neumann

and the AR-conditional entropies. It is readily seen that the result based on the positivity

of the CSTRE is stronger than the one obtained from the positivity of the von Neumann,

AR conditional entropies. Further, it is observed that the CSTRE result agrees with that

identified from the PPT criterion.

In general, the CSTRE approach is found to lead to the separability range

0 ≤ x ≤ N

N + 2N
√
N − 1

(20)
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TABLE II: The 1 : N − 1 separability threshold value of the noisy parameter x in the states

ρWN
(x) for N = 3, 4, 5, 6, obtained via the positivity of the CSTRE, the von Neumann and the

AR conditional entropies, along with the one obtained from the PPT criteria.

Number von Neumann AR CSTRE PPT

of conditional q-conditional

qubits entropy entropy

3 0.7018 0.2727 0.2095 0.2095

4 0.6760 0.2 0.1261 0.1261

5 0.6618 0.1351 0.0724 0.0724

6 0.6567 0.0857 0.0402 0.0402

for the 1 : N −1 partitions of the state ρWN
(x) for N ≥ 3. We recall that the noisy N -qubit

state ρΦN
(x) of (16) is known to be separable iff [32]

0 ≤ x ≤ 1

2N u1 u2 + 1
(21)

where u1 and u2 are the two largest Schmidt coefficients of the pure entangled state |ΦN 〉
under bipartition. In the specific case of (1 : N − 1) partition of the state ρWN

(x), on

substituting the corresponding Schmidt coefficients (see (12)) u1 =
√

N−1
N

, u2 = 1√
N

in

(21), one can recognize that the separability range reveals a clear agreement with (20)

obtained via the CSTRE approach. This establishes that the CSTRE method serves as

necessary and sufficient for inferring separability in this example too.

We continue to investigate the separability in the (1 : N − 1) partition of the noisy

Werner-like N qubit GHZ state

ρGHZN
(x) = (1− x)

I⊗N
2

2N
+ x |GHZN〉 〈GHZN | (22)

using CSTRE criteria. Here, the eigenvalues of the sandwiched matrix (I2 ⊗
σGHZN−1

)
1−q

2q ρGHZN
(x)(I2 ⊗ σGHZN−1

)
1−q

2q , with σGHZN−1
(x) = Tr1[ρGHZN

(x)], for any N ≥ 3

10



are found to be

λ1 =

[
1− x

2N

] [
1− x

2N−1

] 1−q

q

; (2N − 4)-fold degenerate;

λ2 =

[
1− x

2N

][
1 +

(
2N−2 − 1

)
x

2N−1

] 1−q

q

; 3-fold degenerate

λ3 =

[
1 +

(
2N − 1

)
x

2N

][
1 +

(
2N−2 − 1

)
x

2N−1

] 1−q

q

. (23)

Substituting (23) in (5) we find that positivity of CSTRE as q → ∞ requires the following

bounds

0 ≤ x ≤ 1

2N−1 + 1
. (24)

on the noisy parameter x. This result agrees with the 1 : N − 1 separability range obtained

based on the commutative AR method too in the case of ρGHZN
(x). However, the convergence

towards the threshold value of the parameter x → 1
2N−1+1

in the limit q → ∞ based on

the CSTRE method is slower compared to that of the AR approach. This is illustrated

in Fig. 2 in the specific case of N = 6. Moreover, substituting the Schmidt coefficients

0 10 20 30 40 50 60 70
q0.0

0.1

0.2

0.3

0.4

0.5

x

AR

CSTRE

FIG. 2: (Color Online) Implicit plots of D̃T
q (ρGHZ6

||I2⊗σGHZ5
) = 0 as a function of q (dashed line)

and the AR q-conditional entropy ST
q (A|B) = 0 (solid line) for ρGHZ6

(x) in its 1 : 5 partition. The

convergence of the parameter x to its bound 0.0303 under the CSTRE criterion is slower compared

to that of the AR method. (The quantities plotted are dimensionless).

u1 = u2 = 1/
√
2 associated with the (1 : N − 1) partition of the GHZ state in (21), reveals

11



that the range (24) for the parameter x obtained from CSTRE approach is both necessary

and sufficient for the separability in the (1 : N − 1) bipartition of the state ρGHZN
(x).

IV. CONCLUSION

We have evaluated the 1 : N −1 separability range in the noisy N qubit states of the PP,

W and GHZ family using the CSTRE approach. Our results show that the positivity of the

CSTRE in the limit q → ∞ is both necessary and sufficient criterion for the separability of

the (1 : N − 1) partition of the one parameter family of noisy PP, W and GHZ states.

Acknowledgment:

Anantha S. Nayak acknowledges the support of Department of Science and Technol-

ogy (DST), Govt. of India through the award of INSPIRE fellowship; A. R. Usha Devi

is supported under the University Grants Commission (UGC), India (Grant No. MRP-

MAJOR-PHYS-2013-29318).

[1] Horodecki, R., Horodecki, P.: Quantum redundancies and local realism. Phys. Lett. A 194,

147 (1994).

[2] Cerf, N.J., Adami, C.: Negative Entropy and Information in Quantum Mechanics. Phys. Rev.

Lett. 79, 5194 (1997).

[3] Abe, S., Rajagopal, A.K.: Quantum entanglement inferred by the principle of maximum

nonadditive entropy. Phys. Rev. A 60, 3461 (1999).

[4] Giovannetti, V.: Separability conditions from entropic uncertainty relations. Phys. Rev. A 70,

012102 (2004).

[5] Gühne, O., Lewenstein, M.: Entropic uncertainty relations and entanglement. Phys. Rev. A

70, 022316 (2004).

[6] Horodecki, R., Horodecki, P., Horodecki, M.: Quantum α-entropy inequalities: independent

condition for local realism? Phys. Lett. A 210, 377 (1996).

[7] Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states.

Phys. Rev. A 54, 1838 (1996).

12



[8] Tsallis, C.: Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys. 52, 479

(1988).

[9] Tsallis, C., Mendes, R.S., Plastino, A.R.: The role of constraints within generalized nonex-

tensive statistics. Physica A 261, 534 (1998).

[10] Abe, S., Rajagopal, A.K.: Nonadditive conditional entropy and its significance for local real-

ism. Physica A 289, 157 (2001).

[11] Tsallis, C., Lloyd, S., Baranger, M.: Peres criterion for separability through nonextensive

entropy. Phys. Rev. A 63, 042104 (2001).

[12] Abe, S.: Nonadditive information measure and quantum entanglement in a class of mixed

states of an Nn system. Phys. Rev. A 65, 052323 (2002).

[13] Rossignoli, R., Canosa, N.: Generalized entropic criterion for separability. Phys. Rev. A 66,

042306(2002).

[14] Rossignoli, R., Canosa, N.: Violation of majorization relations in entangled states and its

detection by means of generalized entropic forms. Phys. Rev. A 67, 042302 (2003).

[15] Batle, J., Casas, M., Plastino, A.R., Plastino, A.: Conditional q-Entropies and Quantum

Separability: A Numerical Exploration. J. Phys. A 35, 10311 (2002).

[16] Batle, J., Plastino, A.R., Casas, M., Plastino, A.: Some features of the conditional q-entropies

of composite quantum systems. Eur. Phys. J. B 35, 391 (2003).

[17] Prabhu, R., Usha Devi, A.R., Padmanabha, G.: Separability of a family of one-parameter W

and Greenberger-Horne-Zeilinger multiqubit states using the Abe-Rajagopal q-conditional-

entropy approach. Phys. Rev. A 76, 042337 (2007).

[18] Sudha, Usha Devi, A.R., Rajagopal, A.K.: Entropic characterization of separability in Gaus-

sian states. Phys. Rev. A 81, 024303 (2010).

[19] Rajagopal, A.K., Sudha, Nayak A.S. and Usha Devi, A.R.: From the quantum relative Tsallis

entropy to its conditional form: Separability criterion beyond local and global spectra, Phys.

Rev. A 89, 012331 (2014).

[20] Nayak, A.S., Sudha, Rajagopal, A.K. and Usha Devi, A.R.: Bipartite separability of symmet-

ric N-qubit noisy states using conditional quantum relative Tsallis entropy, Physica A 443,

286–295 (2016).

[21] Nielsen, M.A., Kempe, J.: Separable States Are More Disordered Globally than Locally. Phys.

Rev. Lett. 86, 5184 (2001).

13



[22] Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-

variable model. Phys. Rev. A 40, 4277 (1989).

[23] Popescu, S.: Bell’s Inequalities versus Teleportation: What is Nonlocality? Phys. Rev. Lett.

72, 797 (1994).

[24] Peres, A.: Separability Criterion for Density Matrices. Phys. Rev. Lett. 77, 1413 (1996).

[25] Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and

sufficient conditions. Phys. Lett. A 223, 1 (1996).

[26] Wilde, M.M., Winter, A., Yang, D.: Strong Converse for the Classical Capacity of

Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy.
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