Skip to main content
Log in

Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The concept of the quantum radar cross section (QRCS) has generated interest due to its promising feature of enhanced side lobe target visibility in comparison to the classical radar cross section. Researchers have simulated the QRCS for very limited geometries and even developed approximations to reduce the computational complexity of the simulations. This paper develops an alternate theoretical framework for calculating the QRCS. This new framework yields an alternative form of the QRCS expression in terms of Fourier transforms. This formulation is much easier to work with mathematically and allows one to derive analytical solutions for various geometries, which provides an explanation for the aforementioned sidelobe advantage. We also verify the resulting equations by comparing with numerical simulations, as well as provide an error analysis of these simulations to ensure the accuracy of the results. Comparison of our simulation results with the analytical solutions reveal that they agree with one another extremely well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. It has been discovered that the expression for the QRCS presented in [2] was missing a factor of 2. Thus the coefficient of \(2\pi \) has been changed to \(4\pi \) in Eq. (1).

References

  1. Lanzagorta, M.: Low brightness quantum radar. In: Proceedings of the SPIE Conference on Radar Sensor Technology XIX and Active and Passive Signatures VI, Baltimore, MD, 946113 (2015)

  2. Lanzagorta, M.: Quantum Radar. Morgan & Claypool, San Rafael (2012)

    MATH  Google Scholar 

  3. Menzel, E.P., Di Candia, R., Deppe, F., Eder, P., Zhong, L., Ihmig, M., Haeberlein, M., Baust, A., Hoffmann, E., Ballester, D., Inomata, K., Yamamoto, T., Nakamura, Y., Solano, E., Marx, A., Gross, R.: Path entanglement of continuous-variable quantum microwaves. Phys. Rev. Lett. 109, 250502 (2012)

    Article  ADS  Google Scholar 

  4. Emary, C., Trauzettel, B., Beenakker, C.W.J.: Emission of polarized-entangled microwave photons from a pair of quantum dots. Phys. Rev. Lett. 95, 127401 (2005)

    Article  ADS  Google Scholar 

  5. Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114, 080503 (2015)

    Article  ADS  Google Scholar 

  6. Romero, G., Garcia-Ripoll, J.J., Solano, E.: Microwave photon detector in circuit QED. Phys. Rev. Lett. 102, 173602 (2009)

    Article  ADS  Google Scholar 

  7. Woolley, M.J., Lang, C., Eichler, C., Wallraff, A., Blais, A.: Signatures of Hong–Ou–Mandel interference at microwave frequencies. New J. Phys. 15, 105025 (2013)

    Article  ADS  Google Scholar 

  8. Tan, S.-H., Erkmen, B.I., Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Pirandola, S., Shapiro, J.: Quantum illumination with Gaussian states. Phys. Rev. Lett. 101, 253601 (2008)

    Article  ADS  Google Scholar 

  9. Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Design considerations for quantum radar implementation. In: Proceedings of the SPIE Conference on Radar Sensor Technology XVIII, Baltimore, MD, 90770T (2014)

  10. Jiang, K., Lee, H., Gerry, C.C., Dowling, J.P.: Super-resolving quantum radar: coherent-state sources with homodyne detection suffice to beat the diffraction limit. J. Appl. Phys. 114, 193102 (2013)

    Article  ADS  Google Scholar 

  11. Wang, Q., Zhang, Y., Yang, X., Xu, L., Yang, C.: Super-resolving quantum LADAR with even coherent states sources at shot noise limit. In: Proceedings of the International Conference on Optoelectronics and Microelectronics (ICOM), Changchun, China, pp. 19–22 (2015)

  12. Brandsema, M.J., Narayanan, R.M., Lanzagorta, M.: Analytical formulation of the quantum electromagnetic cross section. In: Proceedings of the SPIE Conference on Radar Sensor Technology XX, Baltimore, MD, 98291H (2016)

  13. Lanzagorta, M.: Quantum radar cross sections. In: Proceedings of the SPIE Conference on Quantum Optics, Brussels, Belgium, 77270K (2010)

  14. Berestetskii, V.B., Lifshitz, E.M., Pitaevskii, L.P.: Quantum Electrodynamics, 2nd edn. Pergamon Press Ltd., Oxford (1982)

    Google Scholar 

  15. Kang, L., Huai-Tie, X., Hong-Qi, F.: Analysis and simulation of quantum radar cross section. Chin. Phys. Lett. 31, 034202 (2014)

    Article  ADS  Google Scholar 

  16. Liu, K., Xiao, H., Fan, H., Fu, Q.: Analysis of quantum radar cross section and its influence on target detection performance. IEEE Photonics Technol. Lett. 26, 1146–1149 (2014)

    Article  ADS  Google Scholar 

  17. Lin, Y., Guo, L., Cai, K.: An efficient algorithm for the calculation of quantum radar cross section of flat objects. In: Progress in Electromagnetics Research Symposium Proceedings, Guangzhou, China, pp. 39–43 (2014)

  18. Lanzagorta, M., Venegas-Andraca, S.: Algorithmic analysis of quantum radar cross sections. In: Proceedings of the SPIE Conference of Radar Sensor Technology XIX and Active and Passive Signatures VI, Baltimore, MD, 946112 (2015)

  19. Xu, S.-L., Hu, Y.-H., Zhao, N.-X., Wang, Y.-Y., Li, L., Guo, L.-R.: Impact of metal target’s atom lattice structure on its quantum radar cross-section. Acta Phys. Sin. 64, 154203 (2015)

    Google Scholar 

  20. Balanis, C.A.: Advanced Engineering Electromagnetics, 2nd edn. Wiley, New York (2012)

    Google Scholar 

  21. Ruck, G.T., Barrick, D.E., Stuart, W.D., Krichbaum, C.K.: Radar Cross Section Handbook Volumes 1 and 2. Plenum Press, New York (1970)

    Book  Google Scholar 

  22. Mitra, S.K.: Digital Signal Processing. A Computer Based Approach. McGraw-Hill, New York (2010)

    Google Scholar 

  23. Balanis, C.A.: Antenna Theory, Analysis and Design, 3rd edn. Wiley, Hoboken (2005)

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Kyle Gallagher for providing his insight and many thought provoking conversations which has helped greatly in developing the ideas presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram M. Narayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandsema, M.J., Narayanan, R.M. & Lanzagorta, M. Theoretical and computational analysis of the quantum radar cross section for simple geometrical targets. Quantum Inf Process 16, 32 (2017). https://doi.org/10.1007/s11128-016-1494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1494-6

Keywords

Navigation