Skip to main content
Log in

Multiparty quantum private comparison with almost dishonest third parties for strangers

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This study explores a new security problem existing in various state-of-the-art quantum private comparison (QPC) protocols, where a malicious third-party (TP) announces fake comparison (or intermediate) results. In this case, the participants could eventually be led to a wrong direction and the QPC will become fraudulent. In order to resolve this problem, a new QPC protocol is proposed, where a second TP is introduced to monitor the first one. Once a TP announces a fake comparison (or intermediate) result, participants can detect the fraud immediately. Besides, due to the introduction of the second TP, the proposed protocol allows strangers to compare their secrets privately, whereas the state-of-the-art QPCs require the involved clients to know each other before running the protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Yang, Y.-G., Wen, Q.-Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009). http://stacks.iop.org/1751-8121/42/i=5/a=055305

  2. Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.-j.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72, 044302 (2005). http://link.aps.org/doi/10.1103/PhysRevA.72.044302

  3. Cai, Q.-Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1), 23–25 (2006). http://www.sciencedirect.com/science/article/pii/S0375960105016208

  4. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006). http://link.aps.org/doi/10.1103/PhysRevA.74.054302

  5. Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010). http://www.sciencedirect.com/science/article/pii/S0030401809012668

  6. Liu, W., Wang, Y.-B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012). doi:10.1007/s10773-012-1246-z

    Article  MathSciNet  MATH  Google Scholar 

  7. Wen, L., Yong-Bin, W., Wei, C.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57(4), 583 (2012). http://stacks.iop.org/0253-6102/57/i=4/a=11

  8. Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with w state. Opt. Commun. 284(12), 3160–3163 (2011). http://www.sciencedirect.com/science/article/pii/S0030401811001842

  9. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012). doi:10.1007/s10773-011-0878-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z., Cui, W.: New quantum private comparison protocol using \(\chi \) type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012). doi:10.1007/s10773-011-1073-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using epr pairs. Quantum Inf. Process. 11(2), 373–384 (2012). doi:10.1007/s11128-011-0251-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, Y.-J., Tsai, C.-W., Hwang, T.: Multi-user private comparison protocol using ghz class states. Quantum Inf. Process. 12(2), 1077–1088 (2013). doi:10.1007/s11128-012-0454-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Liu, W., Wang, Y.-B., Wang, X.-M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014). doi:10.1007/s10773-013-1903-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, W.-W., Zhang, K.-J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013). doi:10.1007/s11128-012-0507-3

    Article  ADS  MathSciNet  Google Scholar 

  15. Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997). http://link.aps.org/doi/10.1103/PhysRevA.56.115420

  16. Huang, S.-L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf. Process. 14(11), 4225–4235 (2015). doi:10.1007/s11128-015-1104-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chang, C.-H., Hwang, T., Gope, P.: An efficient quantum private comparison of equality over collective-noise channels. Int. J. Theor. Phys. 55(4), 2125–2138 (2016). doi:10.1007/s10773-015-2851-4

    Article  MATH  Google Scholar 

  18. Huang, S.-L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using ghz states. Int. J. Theor. Phys. 55(6), 2969–2976 (2016). doi:10.1007/s10773-016-2929-7

    Article  MATH  Google Scholar 

  19. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  20. Kim, B., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  Google Scholar 

  21. Luo, Y.-P., Hwang, T.: Arbitrated quantum signature of classical messages without using authenticated classical channels. Quantum Inf. Process. 13(1), 113–120 (2014). doi:10.1007/s11128-013-0634-5

    Article  ADS  Google Scholar 

  22. Sun, Z., Yu, J., Wang, P., Xu, L., Wu, C.: Quantum private comparison with a malicious third party. Quantum Inf. Process. 14(6), 2125–2133 (2015)

    Article  ADS  MATH  Google Scholar 

  23. Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on “experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008). http://link.aps.org/doi/10.1103/PhysRevLett.101.208901

  24. Fei, G., Song, L., Qiao-Yan, W., Fu-Chen, Z.: A special eavesdropping on one-sender versus n-receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561 (2008). http://stacks.iop.org/0256-307X/25/i=5/a=011

  25. Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the brádler-dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007). http://dl.acm.org/citation.cfm?id=2011725.2011729

Download references

Acknowledgements

We would like to thank the Ministry of Science and Technology of Republic of China for financial support of this research under Contract No. MOST 104-2221-E-006-102. The authors would like to thank the anonymous reviewers for their valuable comments to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, SM., Hwang, SL., Hwang, T. et al. Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf Process 16, 36 (2017). https://doi.org/10.1007/s11128-016-1498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1498-2

Keywords

Navigation