Skip to main content
Log in

Room-temperature spin-photon interface for quantum networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Although remarkable progress has been achieved recently, to construct an optical cavity where a nitrogen-vacancy (NV) colour centre in diamond is coupled to an optical field in the strong coupling regime is rather difficult. We propose an architecture for a scalable quantum interface capable of interconverting photonic and NV spin qubits, which can work well without the strong coupling requirement. The dynamics of the interface applies an adiabatic passage to sufficiently reduce the decoherence from an excited state of a NV colour centre in diamond. This quantum interface can accomplish many quantum network operations like state transfer and entanglement distribution between qubits at distant nodes. Exact numerical simulations show that high-fidelity quantum interface operations can be achieved under room-temperature and realistic experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Falci, G., Paladino, E.: The physics of quantum computation. Int. J. Quantum Inf. 12, 1430003 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Stoneham, M.: Is a room-temperature, solid-state quantum computer mere fantasy? Physics 2, 34 (2009)

    Article  Google Scholar 

  3. Hogan, J.: Computing: quantum bits and silicon chips. Nature 424, 484–486 (2003)

    Article  ADS  Google Scholar 

  4. Neumann, P., et al.: Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249–253 (2010)

    Article  Google Scholar 

  5. Jiang, L., et al.: Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009)

    Article  ADS  Google Scholar 

  6. Childress, L., et al.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006)

    Article  ADS  Google Scholar 

  7. Bernien, H., et al.: Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013)

    Article  ADS  Google Scholar 

  8. Maurer, P.C., et al.: Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012)

    Article  ADS  Google Scholar 

  9. Pfaff, W., et al.: Demonstration of entanglement-by-measurement of solid-state qubits. Nat. Phys. 9, 29–33 (2013)

    Article  Google Scholar 

  10. Robledo, L., et al.: High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011)

    Article  ADS  Google Scholar 

  11. Brogaard, K., et al.: A map of nucleosome positions in yeast at base-pair resolution. Nature 486, 496–501 (2012)

    ADS  Google Scholar 

  12. Dolde, F., et al.: Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011)

    Article  Google Scholar 

  13. McGuinness, L.P., et al.: Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotech. 6, 358–363 (2011)

    Article  ADS  Google Scholar 

  14. Gatto, D., et al.: Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics. Phys. Rev. Lett. 113, 143602 (2014)

    Article  ADS  Google Scholar 

  15. Yao, N.Y., et al.: Scalable architecture for a room temperature solid-state quantum information processor. Nat. commun. 3, 800 (2012)

    Article  ADS  Google Scholar 

  16. Cirac, J.I., et al.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  17. Duan, L.-M., et al.: Cavity QED and quantum-information processing with hot trapped atoms. Phys. Rev. A 67, 032305 (2003)

  18. Yao, W., et al.: Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005)

    Article  ADS  MATH  Google Scholar 

  19. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008). (London)

    Article  ADS  Google Scholar 

  20. Choi, K.S., et al.: Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008). (London)

    Article  ADS  Google Scholar 

  21. Yuan, Z.-S., et al.: Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008). (London)

    Article  ADS  Google Scholar 

  22. Stanojevic, J., et al.: Controlling the quantum state of a single photon emitted from a single polariton. Phys. Rev. A 84, 053830 (2011)

    Article  ADS  Google Scholar 

  23. Gorshkov, A.V., et al.: Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007)

    Article  ADS  Google Scholar 

  24. Hijlkema, M., et al.: A single-photon server with just one atom. Nat. Phys. 3, 253–255 (2007)

    Article  Google Scholar 

  25. Wilk, T., et al.: Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    Article  ADS  Google Scholar 

  26. Specht, H.P., et al.: A single-atom quantum memory. Nature 473, 190–193 (2011). (London)

    Article  ADS  Google Scholar 

  27. Faraon, A., et al.: Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat. Photonics 5, 301–305 (2011)

    Article  ADS  Google Scholar 

  28. Albrecht, R., et al.: Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. Phys. Rev. Lett. 110, 243602 (2013)

    Article  ADS  Google Scholar 

  29. Faraon, A., et al.: Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012)

    Article  ADS  Google Scholar 

  30. Li, L., et al.: Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commu. 6, 6173 (2015)

    Article  ADS  Google Scholar 

  31. Aharonovich, I., et al.: Diamond photonics. Nat. Photonics 5, 397–405 (2011)

    Article  ADS  Google Scholar 

  32. Stannigel, K., et al.: Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)

    Article  ADS  Google Scholar 

  33. Verhagen, E.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012). (London)

    Article  ADS  Google Scholar 

  34. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    Article  ADS  Google Scholar 

  35. Rabl, P., et al.: Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79, 041302(R) (2009)

    Article  ADS  Google Scholar 

  36. Lahaye, M.D., et al.: Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009). (London)

    Article  ADS  Google Scholar 

  37. Anetsberger, G., et al.: Near-field cavity optomechanics with nanomechanical oscillators. Nat. Phys. 5, 909–914 (2009)

    Article  Google Scholar 

  38. Kolkowitz, S., et al.: Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012)

    Article  ADS  Google Scholar 

  39. Hong, F.-Y., et al.: Theory of control of optomechanical transducers for quantum networks. Phys. Rev. A 85, 012309 (2012)

  40. Scully, M.O., Zubairy, M.S.: Ouantum optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  41. Beveratos, A., et al.: Nonclassical radiation from diamond nanocrystals. Phys. Rev. A 64, 061802(R) (2001)

    Article  ADS  Google Scholar 

  42. Ladd, T.D., et al.: Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light. New J. Phys. 8, 184 (2006)

    Article  ADS  Google Scholar 

  43. Tomljenovic-Hanic, S., et al.: Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs. Opt. Express 17, 6465 (2009)

    Article  ADS  Google Scholar 

  44. Yao, W., et al.: Theory of control of the dynamics of the interface between stationary and flying qubits. J. Opt. B Quantum Semiclass. Opt. 7, S318 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by both the National Natural Science Foundation of China (11072218, 11472247 and 61475168) and Zhejiang Provincial Natural Science Foundation of China (Grant No. Y6110314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Yu Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, FY., Fu, JL., Wu, Y. et al. Room-temperature spin-photon interface for quantum networks. Quantum Inf Process 16, 43 (2017). https://doi.org/10.1007/s11128-016-1499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1499-1

Keywords

Navigation