Skip to main content
Log in

Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we investigate the dynamic features of the entropic uncertainty for two incompatible measurements under local unital and nonunital channels. Herein, we choose Pauli operators \(\sigma _x \) and \(\sigma _z \) as a pair of observables of interest measuring on particle A, and the uncertainty can be predicted when particle A is entangled with quantum memory B. We explore the dynamics of the uncertainty for the measurement under local unitary (phase-damping) and nonunitary (amplitude-damping) channels, respectively. Remarkably, we derive the entropic uncertainty relation under three different kinds of measurements of Pauli-observable pair under various realistic noisy environments; it has been found that the entropic uncertainty has the same tendency of its evolution during the AD and PD channel when we choose \(\sigma _x \) and \(\sigma _y \) measurement. Besides, we find out that the entropic uncertainty will have an optimal value if one chooses \(\sigma _x \) and \(\sigma _z \) as the measurement incompatibility, comparing with others. Furthermore, in order to reduce the entropic uncertainty in noisy environment, we propose an effective strategy to steer the amount by means of implementing a filtering operation on the particle under the two types of channels, respectively. It turns out that this operation can greatly reduce the entropic uncertainty by modulation of the operation strength. Thus, our investigations might offer an insight into the dynamics and steering of the entropic uncertainty in an open system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heisenberg, W.: The actual content of quantum theoretical kinematics and mechanics. Z. Phys. 43, 172 (1927)

    Article  ADS  MATH  Google Scholar 

  2. Bertal, M., Christandl, M., Colbeck, R., et al.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  3. Bialynicki-Birula, I.: Rényi entropy and the uncertainty relations. AIP Conf. Proc. 889, 52 (2007)

    Article  ADS  MATH  Google Scholar 

  4. Kennard, E.H.: Zur quantenmechanik einfacher bewegungstypen. Z. Phys. 44, 326 (1927)

    Article  ADS  MATH  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  7. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. Renes, J.M., Boileau, J.-C.: Physical underpinnings of privacy. Phys. Rev. A 78, 032335 (2008)

    Article  ADS  Google Scholar 

  9. Wild, M.M., Renes, J.M.: Proceeding of International Symposium on Information Theory, pp. 334–338. IEEE, Cambridge (2012)

    Google Scholar 

  10. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bialynicki-Birula, I.: Rényi entropy and the uncertainty relations. AIP Conf. Proc. 889, 52 (2006)

    Article  ADS  MATH  Google Scholar 

  12. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659–662 (2010)

    Article  Google Scholar 

  14. Kim, Y.-H., Shih, Y.: Experimental realization of popper’s experiment: Violation of the uncertainty principle? Found. Phys. 29, 1849 (1999)

    Article  Google Scholar 

  15. Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)

    Article  ADS  Google Scholar 

  16. Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210504 (2012)

    Article  Google Scholar 

  17. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Mario, B., Matthias, C., Roger, C., Renato, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659–662 (2010)

    Article  Google Scholar 

  19. Coles, P.J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple entropic properties. Phys. Rev. Lett. 108, 210405 (2012)

    Article  ADS  Google Scholar 

  20. Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.: Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 7, 757–761 (2011)

    Article  Google Scholar 

  21. Li, C.F., Xu, J.S., Xu, X.Y., Li, K., Guo, G.C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7, 752–756 (2011)

    Article  Google Scholar 

  22. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  23. Pati, A.K., et al.: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86, 042105 (2012)

    Article  ADS  Google Scholar 

  24. Pramanik, T., Mal, S., Majumdar, A.S.: Lower bound of quantum uncertainty from extractable classical information. Quantum Inf. Process. 15, 981–999 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Breuer, H., Petruccione, F.: The Theory of Open Quantum systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  26. Xu, Z.Y., Yang, W.L., Feng, M.: Quantum-memory-assisted entropic uncertainty relation under noise. Phys. Rev. A 86, 012113 (2012)

    Article  ADS  Google Scholar 

  27. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  28. Christopher, K., Mary, B.R.: Entropy of states emerging from noisy quantum channels. IEEE Trans. Inf. Theory 47, 192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  30. Gisin, N.: Hidden quantum non-locality revealed by local filters. Phys. Lett. A 210, 151156 (1996)

    Google Scholar 

  31. Sun, Q., Al-Amri, M., Davidovich, L., Suhail Zubairy, M.: Reversing entanglement change by a weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  32. Michael, S., Ali, A.K.: Defeating entanglement sudden death by a single local filtering. Phys. Rev. A 86, 032304 (2012)

    Article  Google Scholar 

  33. Sumana, K., Ajoy, S., et al.: Effect of local filtering on freezing phenomena of quantum correlation. Quantum Inf. Process. 14, 2517 (2015)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant Nos. 61275119, 11575001 and 61601002, and Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, AJ., Shi, JD., Wang, D. et al. Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf Process 16, 46 (2017). https://doi.org/10.1007/s11128-016-1503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1503-9

Keywords

Navigation