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Abstract We present a continuous variable (CV) quantum key distribution
(QKD) scheme based on the CV quantum teleportation of coherent states
that yields a raw secret key made up of discrete variables for both Alice and
Bob. This protocol preserves the efficient detection schemes of current CV
technology (no single-photon detection techniques) and, at the same time, has
efficient error correction and privacy amplification schemes due to the binary
modulation of the key. We show that for a certain type of incoherent attack it
is secure for almost any value of the transmittance of the optical line used by
Alice to share entangled two-mode squeezed states with Bob (no 3 dB or 50%
loss limitation characteristic of beam splitting attacks). The present CVQKD
protocol works deterministically (no postselection needed) with efficient di-
rect reconciliation techniques (no reverse reconciliation) in order to generate
a secure key and beyond the 50% loss case at the incoherent attack level.

1 Introduction

Currently, the only absolutely secure way through which two parties (Alice and
Bob) can, at least theoretically, secretly share a random sequence of bits (key)
is given by quantum cryptography, whose security is guaranteed by the validity
of the laws of quantum mechanics [1]. This secret key is the most important
ingredient in the implementation of classical cryptography protocols, such as
the one-time pad, which are provably secure if the key is only known by Alice
and Bob.
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The original QKD protocols are based on single photons (“discrete” states),
requiring photon-counting techniques to their implementation [1,2]. However,
single photon detectors are not as efficient and fast (short response time)
as standard telecommunication PIN photodiodes used to detect bright light
(many photons) [2]. In quantum mechanics these bright quantum states are
described by the quadratures of a mode of the quantized electromagnetic field
and are also known as CV states due to the continuum spectrum of the quadra-
tures. In order to explore the efficient and fast measurement schemes for such
states (homodyne or heterodyne detection), QKD protocols based on several
types of CV states and strategies were proposed [3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17]. They are all called CVQKD protocols [18] and are considered
theoretically secure [19].

The quantum resources of the first CVQKD protocols [3,4], whose security
was equivalent to discrete QKD protocols, were either single-mode squeezed
states, sent from Alice to Bob, or two-mode entangled squeezed states shared
between them. In these early schemes the secret key was encoded either in
binary alphabets composed of two different states (discrete modulation) [3] or
in states with real and imaginary quadratures [4] chosen from Gaussian dis-
tributions (continuous modulation)1. An important development of CVQKD
appeared in [5], where it was shown that coherent states are equally secure
to generate a secret key between Alice and Bob if one uses a Gaussian con-
tinuous modulation and if the transmission loss from Alice to Bob does not
exceed 50%. Subsequently, in [6] it was shown that if Bob accepts only certain
measurement outcomes (postselection) to generate the key, or if Alice and
Bob employ reverse reconciliation techniques [7], they can surpass the 50%
loss threshold. Also, by employing at the same time reverse reconciliation and
postselection one gets the greatest secure key rates [10].

A reconciliation technique is an error correction scheme implemented at
the end of the protocol by Alice and Bob, in which they execute a set of tasks
in order to agree on a common sequence of bits. This process is called direct if
Alice, who sends the quantum states, communicates classically with Bob, who
then processes his data using a predetermined algorithm to agree with Alice’s
random sequence of bits. Reverse reconciliation is the opposite scenario, where
Bob communicates with Alice, who now manipulates her data in order to share
a common key with Bob. So far, there is no CVQKD protocol that is secure
for any value of loss that uses only direct reconciliation and no postselection.

In this article we show a different way to do CVQKD that is secure against
individual attacks for losses close to 100% without resorting to either reverse
reconciliation or postselection, the standard solutions to make a CVQKD pro-

1 A discrete variable QKD scheme is based on the use of qubits or qudits (finite di-
mensional Hilbert spaces) while a CVQKD scheme employs physical systems described by
infinite dimensional Hilbert spaces (such as coherent and squeezed states). Note, however,
that in CVQKD protocols the key can be modulated using either discrete or continuous al-
phabets/variables [18]. In the present protocol we use a discrete alphabet of coherent states
to modulate the key and a two-mode squeezed state to teleport the coherent state from
Alice to Bob. This is why we call our protocol a teleportation-based CVQKD scheme.
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tocol work securely for losses greater than 50%. Since this protocol works de-
terministically (no postselection) and uses a discrete modulation for the key,
it achieves fairly high key rates over long distances, even assuming the usual
conservative reconciliation efficiencies for CV protocols based on binary mod-
ulated keys [13]. Apart from its possible practical significance, this protocol
also adds to our fundamental understanding of CVQKD since it is based on
the active use of CV teleportation protocols [20], opening up alternative ways
to understand the security of CVQKD as well as different routes for future
unconditional security proofs.

Fig. 1 Schematic representation of the teleportation-based CVQKD protocol. The encod-
ing of the binary key on which Alice and Bob agree is {|−α〉, |α〉, |− iα〉, |iα〉} = {0, 1, 0, 1},
where α is a real number. See text and Appendix B for details.

Following [22,23], the main idea behind the present teleportation-based
CVQKD scheme is the active use of the finite resources (finite squeezing)
inherently associated to the CV teleportation protocol, combined with the
knowledge of the pool of coherent states with Alice to be teleported to Bob
[23]. It is by properly making use of these two pieces of information that we can
build a protocol furnishing high key rates even in a scenario with high losses,
turning the finiteness of squeezing into an advantage. Indeed, the CV telepor-
tation protocol is not simply employed as an alternative to the direct sending
of the states with Alice to Bob, as required by the aforementioned standard
CVQKD protocols, where the greater the entanglement of the channel the
more a flawless teleportation is achieved with subsequent higher key rates2.
In the present protocol, however, less entanglement means more efficiency (see

2 Note that the goals of the standard CV teleportation protocol [20] as well as the one of
Ref. [23] are not a secure transmission of quantum states. The generalized CV teleportation
protocol of Ref. [23] is used here as a tool to the development of the present CVQKD
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Appendix D), since we show that for a lossy transmission the amount of en-
tanglement (squeezing) maximizing the key rate is finite, dependent on the
level of loss, and on the coherent states chosen for encoding the key. In other
words, the maximally entangled (infinitely squeezed) channel connecting Alice
and Bob is not the one yielding the greatest key rate.

2 The protocol

Let start describing the protocol (figure 1), whose main ingredient is the mod-
ified CV teleportation protocol presented in [23], where Bob can get an output
state at the end of the teleportation nearly identical to the input state, even for
low squeezing, if Alice and Bob know the set of input states to be teleported.
(See Appendix A for a self-contained presentation of the modified CV telepor-
tation protocol.) To achieve that Alice has to modify her beam splitter (BS)

transmittance and Bob has to modify the displacement D̂k(λ) = eλâ
†

k
−λ∗âk on

his mode, from those given by the original CV teleportation protocol [20], ac-

cording to the pool of input states. Here âk (â†k) is the annihilation (creation)

operator of mode k with quadratures x̂k = (âk + â†k)/2 and p̂k = (âk − â†k)/2i
and commutation relation [x̂k, p̂k] = i/2.

The present teleportation-based CVQKD protocol works as follows. Alice
divides her pool of coherent states into two sets, {|α〉, |−α〉} and {|iα〉, |−iα〉},
which we respectively call real and imaginary basis (α > 0). Alice and Bob
agree beforehand on the following binary encoding [8] in order to associate from
each coherent state a bit value to the key: {|−α〉, |−iα〉} → 0 and {|α〉, |iα〉} →
1. At each run of the protocol, Alice randomly chooses between the real and
imaginary basis and then randomly picks one of the two states belonging to the
chosen basis. Let us generically call this state by |ϕ〉, which is teleported to Bob
by means of a two-mode squeezed state |ψr〉, with squeezing parameter r [20,
21]. |ψr〉 is prepared by Alice, who keeps one of its mode and send the other to
Bob. In order to finish her part in the teleportation, Alice combines her share
of the entangled resource with |ϕ〉 in a BS with transmittance cos2 θ. After
measuring the position and momentum quadratures of the modes outgoing the
BS, Alice informs Bob of her measurement results (x̃u and p̃v).

Bob, who now knows the values of x̃u and p̃v, randomly chooses between
two possible types of displacements D̂(λ) to implement on his mode (λ =
gux̃u+ igvp̃v), which we call real and imaginary displacements. These different
types of displacements are given by different pairs of gains (gu, gv) and are
optimized in the following sense. The real (imaginary) displacement is such
that Bob’s state, ρ̂B, has the greatest fidelity possible with Alice’s input if
she chose the real (imaginary) basis and the least fidelity if her choice was the
imaginary (real) basis. Moreover, this is done such that the optimal (gu, gv) do
not depend on the sign of the teleported coherent state but only on its being a

scheme. Without the present modifications, the protocols given in Refs. [20,23] are not able
to achieve a secure transmission of quantum states.
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real or imaginary state (see figure 2 and the following paragraphs). Note that
by fidelity we mean a quantity F ∈ [0, 1] that measures the similarity between
two quantum states and in our case can be written as F = 〈ϕ|ρ̂B |ϕ〉, where
F = 0 for orthogonal states and F = 1 for identical ones.
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Fig. 2 Optimized parameters giving the greatest (least) fidelity for a teleported real (imag-
inary) coherent state. The optimal settings for the greatest (least) fidelity for an imaginary
(real) input are obtained from the ones above by interchanging gu with gv and changing θ
to π/2 − θ. The squeezing remains unchanged. The dashed curves give the settings for the
original CV teleportation protocol [20].

The next step of the protocol consists in Bob once again displacing his state.
He applies D̂(α) to his mode if he previously implemented the real displace-
ment or D̂(iα) otherwise. The goal of this last displacement is to transform
either the states | − α〉 or | − iα〉 to vacuum states or to move farther from
the vacuum the states |α〉 or |iα〉. One of these real (imaginary) states nearly
describes ρ̂B if Alice chose the real (imaginary) basis and Bob the real (imagi-
nary) displacement in a given run of the protocol. After the last displacement
Bob measures the intensity of his mode and associates the bit 0 if he sees
no light (vacuum state) or the bit 1 if he sees any light (see figure 3). Note
that the previous step can be modified to any strategy aimed to discriminate
between two coherent states, such as the measurement of the quadratures of
ρ̂B using homodyne detection.

Alice and Bob repeat the previous steps until they have enough data to
check for an eavesdropper and still get a secure key long enough for their
purposes. After Alice finishing all teleportations and after Bob making all
measurements, they use an authenticated classical channel to disclose the fol-
lowing information. Alice reveals to Bob the basis used at each run of the
protocol but not the state. Bob reveals to Alice the instances where he used
the optimal values of gu and gv matching the basis chosen by Alice. They
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Fig. 3 Probabilities for Bob detecting the vacuum state at the end of a run of the protocol
if Alice and Bob use the optimal settings given in figure 2. Whenever Bob (or Eve) assumes
incorrectly the basis employed by Alice, he (she) cannot discern between the two possible
inputs (star/blue curves). Note that this fact resembles the key generation scheme of the
BB84 protocol [1] and is one of the reasons why this protocol is successful in establishing a
secure key between Alice and Bob.

discard the data where no matches occurred and use a sample of the remain-
ing data to check for the parameters of the quantum channel (loss and noise)
they previously determined or assumed and to check for security. Then they
implement error correction techniques on the non disclosed data (reconcilia-
tion stage) in order to agree on the random sequence of zeros and ones and,
subsequently, generate the final secret key via standard privacy amplification
techniques (classical algorithms devised to enhance the privacy of a shared
random sequence of data).

As mentioned above, a key feature of the present protocol is the fact that
the optimal (gu, gv) can be chosen such that they do not depend on the sign
of the teleported coherent state, depending only on the state being real or
imaginary. We can see that this can be done by looking at the functional form
of F after a single run of the protocol. Assuming, for definiteness, we are
dealing with real coherent states we have

F = h1(r, θ) exp[f1(p̃v, x̃u, gv, gu, r, θ) + 2αx̃uf2(gu, r, θ) + α2f3(r, θ)], (1)

where the functions h1 and fj , j = 1, 2, 3, are given in Appendix B, along
with all the mathematical details needed to understand the present protocol.
Looking at (1) we see that F depends on α only linearly and quadratically. This
means that we can cancel the dependence of F on the sign of α by eliminating
the linear dependence on it. This is achieved by demanding that

f2(gu, r, θ) = 0, (2)
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which leads to

gu(r, θ) =
sinh(2r) sin θ

cosh2 r − cos(2θ) sinh2 r
. (3)

Furthermore, maximizing F with respect to gv immediately gives

gv(r, θ) =
2 coth r cos θ

coth2 r + cos(2θ)
. (4)

In figure 2 we show the optimal values for these quantities, where r and θ are
chosen such that we get the greatest fidelity for a real teleported state and
the least fidelity when teleporting an imaginary state. It is worth mentioning
that this protocol is very robust to fluctuations about those optimal values
as we show in detail in Appendix B. Also, the physical resources needed to
implement the present protocol with reasonable key rates are already available,
in particular the efficient production of two-mode squeezed states [21], the
main ingredient of the present protocol.

Before we proceed with the security analysis of this protocol, let us review
what we have so far. We showed, first, that it is possible to choose optimal
parameters maximizing the fidelity independently of the sign of the teleported
coherent state and, second, that this choice depends on the coherent state being
real or imaginary. Third, we also showed that Bob can discern which state Alice
teleported if, and only if, he chooses the right displacement to implement on
his mode at the end of a single run of the protocol (see figure 3). Those three
features reminds us of the working principles of the BB84 protocol [1], where
Bob can only obtain the right bit in a given run of the protocol if he measures
his qubit using the same basis employed by Alice to prepare it. In our case, the
non-orthogonal basis of the BB84 protocol is related to the real and imaginary
basis defined here; and the fact that the BB84 protocol only succeeds if Bob
chooses the right measurement basis is connected here to the fact that Bob
must choose the right displacements gu and gv to succeed.

3 Security analysis

Let us move to the security analysis, where we deal with individual (incoherent)
attacks only. The intercept-resend attack, with an eavesdropper Eve blocking
Bob’s share of the entangled state (mode 3 in figure 1) and sending him a
fake mode, is not as serious a threat as the BS attack we will be dealing
with in what follows. This is true because Eve cannot know Alice’s input with
certainty before sending Bob the fake mode. Indeed, Eve can only hope to
know Alice’s input by knowing which basis she used and this only happens
after Bob measures his mode.

The most serious incoherent attack to the present and all CVQKD schemes
is the BS attack, in which Eve inserts a BS of transmittance η in the optical
line connecting Alice and Bob and operates on the signal reaching her (1− η)
in the same way as Bob does with his share of the signal (η). Note that the BS
attack is equivalent to a lossy transmission where 1− η of the signal is lost to
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the environment. For direct reconciliation [5,6], the secure key rate generated
between Alice and Bob in the BS attack is

K = max{0, βIAB − IAE} = {0, ∆I}, (5)

where IAB and IAE are the mutual information between Alice and Bob and
Alice and Eve, respectively. β is the reconciliation efficiency and depends on
the reconciliation software employed. For binary encodings that we use here it
has a conservative value of β ≈ 80% [13]. Since the present protocol and the
BS attack are symmetric with respect the real and imaginary states, in the
following security analysis we consider only the case where Alice used the real
basis and Bob and Eve the real displacement, i.e., we assume Alice teleported
either the coherent state |α〉 or | −α〉, with α real, and Bob and Eve correctly
guessed that Alice chose a real coherent state.

A direct calculation of the mutual informations gives (see Appendix C),

IAY = 1 +
1

∑

j=0

[qYj log
2
qYj + (1 − qYj ) log

2
(1− qYj )

−(1 + qYj − qYj̄ ) log
2
(1 + qYj − qYj̄ )]/2, (6)

where Y = B or E, j̄ = 0(1) if j = 1(0), and qYj is the unconditional (no
postselection) probability of Y to assign the bit j to the key if Alice teleported
the corresponding state that encodes the bit j. In the present case qY

0
means

the probability of Y to detect the vacuum state at the end of a run of the
protocol if Alice teleports |−α〉 while qY

1
is the probability of Y to detect any

light if she teleports |α〉. Note that qYj depends on η and that qBj (η) = qEj (1−η).

In figure 4 we plot ∆I for several values of loss employing the parameters
shown in figure 2. The inset shows that it is possible to choose a value of α
such that for β = 0.8 and 90% loss we get K ≈ 0.03. This value should be
contrasted with those without excess noise in [6], where by setting a perfect
direct reconciliation (β = 1) and postselection one gets K = 0.007 at 75% loss,
and with the ones in [10], where above 80% loss it is not possible to extract a
secret key via direct reconciliation. In other words, we improve the key rate at
about one order of magnitude even assuming more loss. To get such enormous
gain in the key rate we need a squeezing of about 10 dB.

When the loss is exactly 100%, the protocol does not work since Bob’s
state is the vacuum state and Eve can also operate on a vacuum state instead
of the intercepted signal. In this scenario Bob and Eve have the same mutual
information with Alice. This suggests a possible attack on the present protocol,
where for very high losses Eve chooses to operate on the vacuum state instead
of her share of the intercepted signal. This seems reasonable since the vacuum
state is closer to the state with Bob in a very lossy environment. If Eve chooses
to work with both the intercepted signal and the vacuum state, the effective
secure key rate that can be achieved between Alice and Bob is

Ke = max{0,min{∆I,∆I0}}, (7)
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(90% loss) for the greatest peaks of the solid and dashed curves while η = 0.2 (80% loss) for
the corresponding lowest ones.

where ∆I0 = βIAB − I0AE and I0AE is the mutual information between Alice
and Eve assuming Eve’s state is the vacuum.

Using for gu and gv their optimal previously obtained expressions when the
matching condition occurs, Eqs. (3) and (4), Ke becomes a function of only r,
θ, and η. Fixing η, we can optimize Ke as a function of r and θ once we choose
a coherent state |α〉 (see Appendix C). Working with β = 0.8, we obtained
for 90% loss two regions of α in which a meaningful key can be obtained. For
α ≈ 0.5 we have Ke = 0.001 with r = 1.44 (12.5 dB) and for α ≈ 1.75 we
get Ke ≈ 0.009 with r ≈ 0.93 (8.1 dB). When the losses are 95% we get for
α ≈ 0.5, Ke ≈ 0.0008 with r ≈ 1.47 (12.8 dB), and for α ≈ 1.6, Ke ≈ 0.001
with r ≈ 0.85 (7.4 dB). In Appendix D we give for every α between 0 and 10
the optimal values for the key rates and the corresponding optimal parameters
leading to those key rates.

Table 1 Optimized key rates Ke for a fixed reconciliation efficiency β, loss 1 − η, and
squeezing r with the corresponding optimal parameters. We assume real states |α〉.

β loss r(dB) α cos2 θ gu gv Ke

0.8 95% 0.9(7.82) 1.65 0.058 0.957 0.632 2.9× 10−3

0.9 95% 0.7(6.08) 1.60 0.080 0.887 0.494 3.7× 10−3

1.0 99% 0.1(0.87) 1.50 0.114 0.186 0.068 3.0× 10−6

1.0 99% 0.2(1.74) 1.50 0.116 0.360 0.139 6.8× 10−5

1.0 99% 0.3(2.61) 1.50 0.108 0.516 0.206 4.2× 10−4

1.0 99% 0.4(3.47) 1.55 0.129 0.640 0.306 1.3× 10−3
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Fortunately the present scheme can be secure for low squeezing r, in par-
ticular if Alice and Bob use state of the art reconciliation protocols in which
β ≈ 1. Working with fixed values of r and maximizing Ke as a function of
θ we can show that for squeezing below 2 dB it is still possible to get a se-
cure key. In table 1 we show the maximum Ke attainable for different values
of squeezing and reconciliation efficiencies (β). Note that for β = 0.8 or 0.9
our numerical maximization indicated that one cannot get a secure key when
losses are about or higher than 99% .

We can estimate how far Alice and Bob can be for the present protocol
to work securely and with a reasonable bit generation rate as follows. Noting
that state of the art generation rates of two-mode squeezed states [21] are of
106 events per second, and working with a key rate of at least Ke = 10−3, the
present protocol allows Alice and Bob to share at least 103 bits per second.
With that in mind, looking at table 1 we see that for β = 0.8 we can get
Ke = 10−3 at 95% loss and for β = 1.0 we can go up to 99% loss. Now,
assuming standard telecommunication fiber optics, we have an attenuation
coefficient ǫ = 0.2 dB/km. Since the relation between distance L, loss 1 − η
and ǫ is η = 10−ǫL/10 [2], we get for 95% loss L = 65 km and for 99% loss
L = 100 km.

We have also computed for several values of reconciliation efficiency β and
squeezing r the optimal key rate as a function of the loss or, equivalently,
the distance between Alice and Bob. The free parameters in the optimization
procedure were the coherent state α and Alice’s BS transmittance cos2 θ; gu
and gv were set to the values given in Eqs. (3) and (4).

In Fig. 5 we show the optimal key rate Ke, Eq. (7), and in Figs. 6 and 7
the optimal parameters leading to the curves shown in Fig. 5.

Looking at Fig. 5 we note that there exist two distinct regimes for the
behavior of the optimal key rate Ke. The first one, for losses below 50%, as we
increase the loss we decrease Ke. The second regime occurs for losses greater
than 50%. In this caseKe first increases with more loss, reaching its maximum
value at about 80% loss, and then decreases with loss. It is worth mentioning
that at losses about 50% no key can be established, at least to the precision of
our numeric computations (6 significant figures). We can understand that fact
remembering that at 50% loss the density matrices describing the states with
Bob and Eve are equal and, therefore, the mutual information between Bob
and Alice is exactly equal to the one between Eve and Alice; no secure key
can be established in this case 3. For a similar reason we cannot get a secure
key for losses close to 100%, since in this situation Eve employs the vacuum
state which is very close to the state with Bob, who receives almost no signal.
Thus, it is expected that very close to the 50% loss or to the 100% loss no key
can be generated. Moreover, as the loss approaches 50%, either from below or

3 In other words, as we approach the value of 50% loss, either from above or below, the
states reaching Bob and Eve become more and more equal and the key rate must necessary
decrease, being exactly zero when we reach the 50% loss threshold since in this situation
Bob and Eve have exactly the same state.
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Fig. 5 Optimal key rate as a function of loss (lower horizontal axis) or, equivalently,
as a function of the distance between Alice and Bob (upper horizontal axis), assuming
standard fiber optics attenuation (0.2 dB/km). The squeezing r (in dB) of the quantum
channel connecting Alice and Bob as well as the reconciliation efficiency β employed in the
computation of the key are indicated in the curves.

above, and as the loss tends to 100%, the key rate decreases very fast, being
exactly zero at those two values of loss for the reasons given above.
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Fig. 6 Coherent state α leading to the optimal key rates shown in Fig. 5.

Looking at Fig. 7 we can see the main reason why this protocol works
securely when Eve implements the BS attack and operates on her share of the
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Fig. 7 Alice’s BS transmittance cos2 θ leading to the optimal key rates shown in Fig. 5.
The optimal gu and gv can be obtained using Eqs. (3) and (4) and the data above to obtain
θ by noting that 0 < θ < π/2.

signal in the same way as Bob, even when we cross the 50% loss threshold. It
is due to the fact that the optimal transmittance (cos2 θ) for Alice’s BS leading
to the highest mutual information between Alice and Bob, and therefore to the
optimum key rate Ke, depends on the loss of the quantum channel connecting
them. (We should not forget that Alice’s BS transmittance also depends on
whether we have real or imaginary states. We are considering, as stated in the
beginning of this section, the situation where Alice employed the real basis
and both Bob and Eve correctly chose the real displacements.) Indeed, since
Bob receives η of the signal in a lossy transmission, Alice sets the transmit-
tance of her BS in order to maximize the mutual information between her and
Bob in this scenario. However, Eve gets 1 − η of the signal, which requires
a completely different value of transmittance for Alice’s BS in order to make
Eve’s state a good approximation to the teleported one. In other words, since
Alice chooses the optimal setting for her BS according to the intensity of the
signal reaching Bob (η), Eve’s share of the teleported state is not as good a
description of the original teleported state as Bob’s share is. Because of this
fact the mutual information between Alice and Eve (IAE) is lower than the
one between Alice and Bob (IAB), which is the ingredient needed to establish
a secure key between Alice and Bob.

A final remark is in order before we finish this section. The previous security
analysis was carried out assuming an individual (incoherent) BS attack and
Eve operating exactly as Bob in order to extract the secure key. Therefore,
it is important to extend the security analysis here in at least two ways to
check whether the interesting security properties of the present protocol still
hold, in particular its secure operation above the 50% loss threshold. First, we
need to check different scenarios at the incoherent attack level. For example,
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what would happen if Eve attenuates her share of the signal to the same
intensity reaching Bob and only then operates on her share to extract the
key? Second, it is crucial to study more powerful attacks, such as collective
and coherent attacks. Moreover, it is also important to point out that it is
not obvious that the techniques employed in the security analysis of collective
and coherent attacks for Gaussian modulated CV protocols can be directly
employed here (we employed binary discrete modulation/encoding). This is
due to the fact that a non-Gaussian encoding of the key, even if employing
Gaussian states, have non-Gaussian entanglement-based representations, and
the latter fact means that the calculation of Eve’s information cannot rely on
the optimality proofs of continuous modulated protocols [18]. In other words, a
whole new mathematical analysis must be done in order to compute in our case
the optimal Holevo’s bound (upper bound of Eve’s information), the quantity
needed to investigate collective and more general forms of security attacks. So
far we could not solve that problem or find its solution in the literature. A
possible starting point in this direction would be to generalize the analysis in
Ref. [24] to the present protocol in order to estimate at least lower and upper
bounds on the secure key rate when Eve implements collective attacks.

We also remark that our main goal in writing this article was to present
a new way of doing CVQKD based on the CV teleportation protocol and to
understand its potential as a viable secure alternative to realize CVQKD. We
compared its efficiency and security to the ones of the standard CVQKD pro-
tocols when those protocols operate under the same assumptions as ours, i.e,
a BS attack (loss in the channel) and no excess noise. The standard CVQKD
protocols we used as a benchmark of comparison were those of Refs. [5,6].
And when it comes to efficiency in the security scenario described above, our
protocol gives higher key rates than the ones of the aforementioned references.
This is the main message we wanted to pass by writing this article and we
hope to encourage those working with CVQKD to further assess the security
of the present protocol under more severe attacks.

4 Conclusion

In summary, we proposed a new and efficient CVQKD scheme with a binary
encoding for the key (discrete modulation) based on the CV teleportation of
coherent states, where the CV teleportation protocol is not just a substitute to
the direct sending of coherent states from Alice to Bob for the usual CVQKD
protocols. Rather, the resources needed to implement the CV teleportation
protocol play a direct role in the generation of the secret key since Alice’s BS
transmittance, the squeezing of the entangled channel, and Bob’s displacement
are all tuned in order to generate a secret key.

We showed that the present teleportation-based CVQKD protocol is secure
against individual attacks and in particular that it works with direct recon-
ciliation and no postselection even for very high loss in the optical channel
connecting Alice and Bob. Moreover, we showed that it is possible to achieve



14 F. S. Luiz, Gustavo Rigolin

fairly high key rates with mild squeezing (≈ 2 dB) near the 100% loss regime.
This fact combined with the high repetition rates of CV technology may lead
to efficient long distance QKD protocols. Indeed, once a mildly squeezed two-
mode entangled state channel is established between Alice and Bob, directly
or via entanglement swapping techniques, they can generate a secret key using
the present CVQKD scheme.

Finally, the present CVQKD protocol naturally leads to many interesting
open questions. First, since we have only dealt with the noiseless case, the next
question is to understand how robust the present scheme is to the addition
of noise at the transmission line. Second, can reverse reconciliation and/or
postselection increase the key rates of this scheme and decrease even more the
level of squeezing to generate a secure key? Third, will the present protocol
still work in a very lossy environment if it suffers different types of security
attacks, such as the collective and coherent attacks? Those are the problems
we will be tackling in the near future and, so far, the main message one can
extract from the present article is that for individual BS attacks we have a
teleportation-based CVQKD protocol, built on a binary encoding for the key,
with at least the same level of security of the standard CVQKD protocols and,
at the same time, operating beyond the 50% loss threshold without resorting
to postselection or reverse reconciliation.
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A The modified CV teleportation protocol

A key ingredient to the present scheme is the CV teleportation protocol [20] adapted to
the case where Alice and Bob has a complete knowledge of the pool of possible states to
be teleported [23]. With such a knowledge, Alice and Bob can greatly improve the fidelity
between the teleported state with Bob and Alice’s input by changing certain parameters
of the original proposal. Our goal in this section is to review in a self contained way this
modified CV teleportation protocol, following closely the presentation given in [23].

Let x̂k = (âk+ â
†
k
)/2 and p̂k = (âk− â†k)/2i be the position and momentum quadratures

of mode k, respectively, where âk and â†
k
are the annihilation and creation operators with

commutation relation [âk, â
†
k
] = 1.

Any input state with Alice can be expressed in the position basis as

|ϕ〉 =
∫

dx1ϕ(x1)|x1〉, (8)

where the integral covers the entire real line and ϕ(x1) = 〈x1|ϕ〉. The entangled two-mode
squeezed state shared between Alice and Bob can also be expressed in the position basis,

|ψr〉 =
∫

dx2dx3ψr(x2, x3)|x2, x3〉, (9)
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with ψr(x2, x3) = 〈x2, x3|ψr〉 and |x2, x3〉 = |x2〉 ⊗ |x3〉. Here the first two modes/kets are
with Alice and the third one with Bob. Using Eqs. (8) and (9) the initial state describing
all modes before the teleportation is as follows,

|Ψ〉 = |ϕ〉 ⊗ |ψr〉 =
∫

dx1dx2dx3ϕ(x1)ψr(x2, x3)|x1, x2, x3〉. (10)

The teleportation begins sending mode 1 (input state) and mode 2 (Alice’s share of

the entangled state) into a BS with transmittance cos2 θ (see figure 1). If B̂12(cos2 θ) is the
operator representing the action of the BS in the position basis we have [18]

B̂12(cos
2 θ)|x1, x2〉 = |x1 sin θ + x2 cos θ, x1 cos θ − x2 sin θ〉. (11)

Inserting equation (11) into (10) and changing variables such that xv = x1 sin θ+x2 cos θ
and xu = x1 cos θ − x2 sin θ we get

|Ψ ′〉 =

∫

dxvdxudx3ϕ(xv sin θ + xu cos θ)

×ψr(xv cos θ − xu sin θ, x3)|xv, xu, x3〉 (12)

for the total state after modes 1 and 2 go through the BS.
In the next step Alice measures the momentum and position quadratures of modes v and

u, respectively. Since Alice will project mode v onto the momentum basis, it is convenient to
rewrite equation (12) using the Fourier transformation relating the position and momentum
basis,

|xv〉 =
1√
π

∫

dpve
−2ixvpv |pv〉. (13)

This leads to

|Ψ ′〉 =
1√
π

∫

dpvdxvdxudx3ϕ(xv sin θ + xu cos θ)

×ψr(xv cos θ − xu sin θ, x3)e
−2ixvpv |pv, xu, x3〉.

(14)

Let us assume Alice obtains for the momentum of mode v and for the position of mode
u the values p̃v and x̃u. Thus, the state after the measurement is

|Ψ ′′〉 = P̂p̃v,x̃u |Ψ ′〉/
√

p(p̃v, x̃u),

where P̂p̃v,x̃u = |p̃v, x̃u〉〈p̃v, x̃u| ⊗13 is the von Neumann projector describing the measure-

ments. Here 13 is the identity operator acting on mode 3 and p(p̃v, x̃u) = tr (|Ψ ′〉〈Ψ ′ |P̂p̃v,x̃u)
is the probability of measuring momentum p̃v and position x̃u, with tr denoting the
total trace. Specifying to the position basis and using that 〈pv|p̃v〉 = δ(pv − p̃v) and
〈xu|x̃u〉 = δ(xu − x̃u) we have

|Ψ ′′〉 = |p̃v, x̃u〉 ⊗ |χ′〉, (15)

where Bob’s state is

|χ′〉 =
1

√

πp(p̃v, x̃u)

∫

dxvdx3e
−2ixv p̃vϕ(xv sin θ + x̃u cos θ)

×ψr(xv cos θ − x̃u sin θ, x3)|x3〉. (16)

Here

p(p̃v , x̃u) =

∫

dx3|Ψ ′(p̃v, x̃u, x3)|2 (17)
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and Ψ ′(p̃v, x̃u, x3) = 〈p̃v, x̃u, x3|Ψ ′〉 such that

Ψ ′(p̃v, x̃u, x3) =
1√
π

∫

dxvϕ(xv sin θ + x̃u cos θ)

×ψr(xv cos θ − x̃u sin θ, x3)e
−2ixv p̃v , (18)

where equation (18) was obtained using (14).
Via a classical channel Alice sends to Bob her measurement results, allowing Bob

to displace his mode quadratures as follows, x3 → x3 + gux̃u and p3 → p3 + gv p̃v.
Mathematically this corresponds to the application of the displacement operator D̂(λ) =

eλâ
†−λ∗â = e−2iRe[λ]p̂+2iIm[λ]x̂, with λ = gux̃u + igv p̃v and ∗ denoting the complex con-

jugation. Since x̂ and p̂ commute with their commutator Glauber’s formula applies, giving
D̂(λ) = eiRe[λ]Im[λ]e−2iRe[λ]p̂e2iIm[λ]x̂ and finally

D̂(gux̃u + igv p̃v)|x3〉 = eigugvx̃u p̃ve2igv p̃vx3 |x3 + gux̃u〉. (19)

Bob’s state after the displacement, |χ〉 = D̂(gux̃u+ igv p̃v)|χ′〉, can be written as follows
if we use equation (19) and change variable such that x3 → x3 − gux̃u,

|χ〉 =
∫

dx3χ(x3)|x3〉, (20)

with

χ(x3) =
e−igugv x̃up̃v

√

πp(p̃v , x̃u)

∫

dxvϕ(xv sin θ + x̃u cos θ)

×ψr(xv cos θ − x̃u sin θ, x3 − gux̃u)e
−2i(xv−gvx3)p̃v . (21)

In order to estimate after a single run of the protocol the closeness of Bob’s state,
ρ̂B = |χ〉〈χ|, with the original one at Alice’s, ρinput = |ϕ〉〈ϕ|, we use the fidelity

F = 〈ϕ|ρ̂B |ϕ〉 =
∫

dx′3dx3ϕ
∗(x′3)χ(x

′
3)χ

∗(x3)ϕ(x3). (22)

In general F depends on the input state |ϕ〉, the measurement outcomes of Alice (x̃u and p̃v),
the squeezing r of the entangled two-mode squeezed state, θ, gu, and gv. Also, F achieves
its highest value (F = 1) if we have a flawless teleportation (ρ̂B = ρ̂input) and its minimal
one (F = 0) if the output is orthogonal to the input.

We will be dealing with input states given by coherent states, |ϕ〉 = |αeiξ〉, with α
and ξ reals, and with entangled two-mode squeezed states shared between Alice and Bob

|ψr〉 =
√

1− tanh2 r
∑∞

n=0
tanhn r|n〉A⊗|n〉B , where |n〉A(B) are Fock number states with

Alice (Bob) and r is the squeezing parameter. When r = 0 we have |00〉, the vacuum state,
and for r → ∞ the unphysical maximally entangled Einstein-Podolsky-Rosen (EPR) state.

In the position basis we have [18]

ϕ(x1) = 〈x1|αeiξ〉 =
(

2

π

)1/4

e−x2

1
+2αeiξx1−α2/2−α2ei2ξ/2 (23)

and

ψr(x2, x3) = 〈x2, x3|ψr〉 =
√

2

π
exp

[

−e−2r(x2 + x3)
2/2 −e2r(x2 − x3)

2/2
]

. (24)

Note that for a two-mode squeezed state the variance ∆2
r(x2−x3) = 〈ψr |(x2−x3)2|ψr〉−

〈ψr |(x2 − x3)|ψr〉2 = e−2r/2, which is employed to measure the squeezing of this state in
decibel:

IdB = −10 log10

[

∆2
r(x2 − x3)

∆2
0(x2 − x3)

]

= 20r log10(e). (25)
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B The teleportation-based CVQKD protocol

The present CVQKD protocol is based on a binary encoding for the key such that {| −
α〉, |α〉, | − iα〉, |iα〉} = {0, 1, 0, 1}, with α a real number. These states are to be teleported
from Alice to Bob randomly. A step by step description of a successful run of the protocol,
generating a common random bit between Alice and Bob, is as follows. (1) Alice randomly
chooses between the real or imaginary coherent state “basis” and then randomly prepares
| ±α〉 or | ± iα〉, respectively, to teleport to Bob. In Fig. 1 we describe the case where Alice
chooses |α〉 (mode 1 given by the solid/blue line). (2) Alice generates a two-mode squeezed
entangled state (modes 2 and 3), whose squeezing parameter r is chosen according to the
value of α, and sends mode 3 to Bob. (3) Alice adjusts the beam splitter (BS) transmittance
according to her choosing the real or imaginary basis and then sends mode 1 to interact
with her share of the two-mode squeezed state (mode 2). (4) She measures the position and
momentum quadratures of the modes u and v, respectively, that emerge after the BS and
classically informs Bob of those results (x̃u and p̃v). (5) Bob randomly chooses (gu, gv) from
two possible pairs of values and implements a displacement operation on his mode given by
D̂(λ), where λ = gux̃u + igv p̃v. gu and gv are such that the fidelity of Bob’s output state
with Alice’s input is greatest if she chooses a real (imaginary) state and he assumes a real
(imaginary) state and, at the same time, least if she chooses an imaginary (real) state and he
assumes a real (imaginary) state. The optimal pair (gu, gv) depends on the input being a real
or imaginary coherent state but not on its sign. (6) Bob implements another displacement

on his mode, D̂(α) or D̂(iα), depending on the choice he made for the pair (gu, gv). Fig.
1 shows the case in which Bob assumes Alice chooses the real basis (solid lines). Had he
assumed the wrong basis, which Alice and Bob will discover classically communicating after
finishing the whole protocol, they would discard this run of the protocol. (7) Bob measures
the intensity of his mode and assigns the bit value 0 if he sees no light (vacuum mode) and
the bit 1 otherwise.

B.1 Fidelity analysis

We will explicitly analyze the case where Alice chooses the real basis, namely, she teleports
either | − α〉 or |α〉 to Bob. The calculations for the imaginary basis are similar and only
the final results for this case will be given. Therefore, assuming that we have a real coherent
state, Eqs. (20), (23), and (24) when inserted into Eq. (22) give

F = h1(r, θ) exp[f1(p̃v, x̃u, gv, gu, r, θ) + 2αx̃uf2(gu, r, θ) + α2f3(r, θ)], (26)

where

h1(r, θ) =
√

1− cos2(2θ) tanh4 r,

f1(p̃v, x̃u, gv, gu, r, θ) =
{[

g2ux̃
2
u − g2v p̃

2
v

]

cos(2θ) tanh r + 4gux̃
2
u sin θ

+4gvp̃
2
v cos θ

}

tanh r

+x̃2u

[

−g2u +
2

cosh2 r − cos(2θ) sinh2 r
− 2

]

+p̃2v

[

−g2v +
2

cosh2 r + cos(2θ) sinh2 r
− 2

]

,

f2(gu, r, θ) = gu − {gu cos(2θ) tanh r + 2[1 + gu cos θ] sin θ} tanh r

+2

(

1

cos(2θ) sinh2 r − cosh2 r
+ 1

)

cos θ,

f3(r, θ) = −{cosh r − [tanh r cos(2θ) + sin(2θ)] sinh r}2
cosh2 r − cos(2θ) sinh2 r

.
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Since we want the optimal F in a way that the optimal settings do not depend on the
sign of α we set f2(gu, r, θ) = 0. This gives the following value for gu,

gu(r, θ) =
sinh(2r) sin θ

cosh2 r − cos(2θ) sinh2 r
. (27)

Moreover, since gv only appears in the exponent and we want the maximum of F , we
maximize the exponent as a function of gv. Differentiating the exponent with respect to gv
and equating to zero we get

gv(r, θ) =
2 coth r cos θ

coth2 r + cos(2θ)
. (28)

Inserting gu and gv back into F we finally obtain

F re(r, θ) =
√

1− cos2(2θ) tanh4 r

× exp

{

−α2{cosh r − sinh r[cos(2θ) tanh r + sin(2θ)]}2
cosh2 r − cos(2θ) sinh2 r

}

,

(29)

where we use the superscript “re” to remind us that this is the optimal F for real inputs.
Also, it is important to note that the optimal expression for F , as well as for gu and gv,
do not depend on the measurement outcomes x̃u and p̃v obtained by Alice. This is one of
the reasons making the present CVQKD scheme yield high key rates without postselecting
a subset of all possible measurement outcomes of Alice.

For an imaginary input, namely, either |iα〉 or |−iα〉, the roles of gu and gv are reversed.
In order to have a solution for F independent of the sign of the imaginary coherent state we
fix gv. Then, we maximize the exponent of F as a function of gu. The final result is that we
obtain the same expressions for gu and gv as given before for the real case and the following
expression for the fidelity:

F im(r, θ) =
√

1− cos2(2θ) tanh4 r

× exp

{

−α2{cosh r + sinh r[cos(2θ) tanh r − sin(2θ)]}2
cosh2 r + cos(2θ) sinh2 r

}

.

(30)

Comparing both expressions for the fidelity we see that

F re(r, θ) = F im(r, π/2 − θ). (31)

The final calculations needed to determine the optimal r and θ are as follows. We want
r and θ such that if Alice chooses the real basis and Bob assumes Alice chose the real basis,

F re is maximal and F im is minimal. This is achieved maximizing the following function:

Πre(r, θ) = F re(r, θ)[1− F im(r, θ)]. (32)

It is not possible, however, to analytically solve the optimization problem associated to
Eq. (32) and get simple closed expressions for the optimal r and θ. Thus, the maximization
of Eq. (32) is carried out numerically once the value of α is specified. This is what was done
to get the optimal data shown in figure 2 of the main text.

The optimal parameters if Alice chooses the imaginary basis and Bob assumes Alice

chose the imaginary basis is obtained imposing that F re be minimal and F im be maximal.
This is obtained maximizing the following function:

Πim(r, θ) = F im(r, θ)[1− F re(r, θ)] = Πre(r, π/2− θ). (33)
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It is clear by the last equality that the optimal θ for the imaginary input is obtained from
the optimal one for the real input by subtracting it from π/2. The relations between the
optimal settings for the real and imaginary inputs are as follows:

θre = π/2− θim, (34)

grev = gimu , (35)

greu = gimv , (36)

rre = rim. (37)

B.2 Key generation analysis

The state with Bob after finishing the teleportation protocol is given by equation (20),
where he has already implemented either the real or imaginary displacement on his mode.
By real and imaginary displacements we mean that Bob applied the displacement D̂(λ),

with λ = gux̃u + igvp̃v, using either the real (greu and grev ) or imaginary (gimu and gimv )
optimal parameters.

In the next step of the teleportation-based CVQKD protocol, he implements another
displacement, which depends on whether he chose the real or imaginary displacement. For a
previously real displaced mode he now applies the displacement D̂(α) and for a previously

imaginary displaced mode he applies D̂(iα). The goal of these last displacements is to
transform states nearly described by | − α〉 or | − iα〉 to vacuum states and to push further
away from the vacuum the states |α〉 or |iα〉. Note that Bob’s state will be very close to one
of those four states only if the “matching condition” occurred, i.e., if Alice teleported a real
(imaginary) state and Bob used the optimal settings presuming a real (imaginary) input by
Alice.

Mathematically, the state after the last displacement is

|χ̃〉 = D̂(γ)|χ〉, (38)

where γ = α or γ = iα. The probability to detect the vacuum state is

QB
0 = |〈0|χ̃〉|2 = |〈−γ|χ〉|2 =

∣

∣

∣

∣

∫

dx3ϕ
∗
−γ(x3)χ(x3)

∣

∣

∣

∣

2

, (39)

where we used that D̂(γ) = D̂†(−γ) and 〈0|D̂(γ) = 〈−γ|. In equation (39) ϕ∗
−γ(x3) is the

complex conjugate of (23), with the subscript −γ as a reminder to which coherent state the
kernel ϕ(x3) refers to, and χ(x3) is given by equation (20).

Figure 3 in the main text is a plot of QB
0 for all possible combinations of input state by

Alice and displacement by Bob when a matching condition occurs (the first four curves from
top to bottom). The fifth and sixth curves are QB

0 averaged over all possible measurement
outcomes x̃u and p̃v for Alice, weighted by Alice’s probability to get x̃u and p̃v (cf. equation
(17)),

qB0 =

∫

dp̃vdx̃up(p̃v , x̃u)Q
B
0 (p̃v, x̃u). (40)

This averaging is needed whenever the matching condition does not occur since QB
0 depends

on x̃u and p̃v in this case. See figure 8 for a reproduction of figure 3 of the main text but
this time with a different caption, where we employ the notation just developed to describe
each one of the plotted curves.

We have also tested the robustness of the optimal settings by randomly and indepen-
dently changing the optimal parameters about their correct values. As can be seen in figure
9, the optimal settings are very robust, supporting fluctuations of ±2% about the optimal
values for small and large α. For small α fluctuations of ±10% is still tolerable.
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Fig. 8 The first curve is QB
0 computed with the following parameters, Alice’s input =

| − α〉, rre, θre, λ = greu x̃u + igrev p̃v, γ = α. The second curve is QB
0 for Alice’s input =

| − iα〉, rim, θim, λ = gimu x̃u + igimv p̃v, γ = iα. The third curve is QB
0 for Alice’s input =

|α〉, rre, θre, λ = greu x̃u + igrev p̃v, γ = α. The fourth curve is QB
0 for Alice’s input =

|iα〉, rim, θim, λ = gimu x̃u + igimv p̃v, γ = iα. The fifth curve is the averaged QB
0 for

Alice’s input = | ± α〉, rre, θre, λ = gimu x̃u + igimv p̃v, γ = iα. The sixth curve is the av-

eraged QB
0 for Alice’s input = | ± iα〉, rim, θim, λ = greu x̃u + igrev p̃v, γ = α.

C Security analysis

We want to study how the teleportation-based CVQKD protocol responds to a lossy channel,
or equivalently, to the BS attack. This will allow us to determine the level of loss in which
a secure key can be extracted via direct reconciliation and no postselection.

C.1 Lossy channel or the presence of Eve

We want to investigate the security of the present scheme to the BS attack. In the BS attack
an eavesdropper (Eve) inserts a BS of transmittance η, 0 ≤ η ≤ 1, during the transmission
to Bob of his share of the entangled two-mode squeezed state (mode 3 in figure 1). In this
case Bob will receive a signal with intensity η and Eve the rest. With her share of the signal,
1− η, Eve proceeds as Bob in order to extract information of the key.

The BS is inserted before Bob receives his mode and therefore before he applies the
displacements D̂(λ) and D̂(γ), with γ = α or iα. Bob’s state before the insertion of the BS
is |χ′〉 as given in equation (16). Hence, the joint state of Bob and Eve before the BS is

|Ω〉 = |χ′〉|0〉 =
∫

dx3dx4〈x3|χ′〉〈x4|0〉|x3〉|x4〉 =
∫

dx3dx4χ
′(x3)ϕ0(x4)|x3, x4〉, (41)

with ϕ0(x4) given by Eq. (23) with α = 0. But since

B̂34(η)|x3, x4〉 =
∣

∣

∣

√
ηx3 −

√

1− ηx4,
√

1− ηx3 +
√
ηx4

〉

(42)
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Fig. 9 For each value of α we have implemented 100 realizations of random fluctuations
about the input state, about the optimal values r, θ, gv, gu, and about γ. We worked with
Alice’s sending a real state and Bob assuming a real state. Similar results are obtained for the
imaginary matching condition. The red/square curves connects the maximal and minimal
values for qB0 due to the random fluctuations assuming Alice sent a negative real state. The

gray dots between the red/square curves represent the value of qB0 at each realization. The
black/circle curves has the same meaning of the red/square curves but assuming Alice sent
a positive real state.

we have after the BS,

|Ω〉 = B̂34(η)|χ′〉3|0〉4

=

∫

dx3dx4χ
′(x3)ϕ0(x4)

∣

∣

∣

√
ηx3 −

√

1− ηx4,
√

1− ηx3 +
√
ηx4

〉

,

=

∫

dx3dx4χ
′(
√
ηx3 +

√

1− ηx4)ϕ0(
√
ηx4 −

√

1− ηx3)|x3, x4〉.

(43)

The last equality was obtained making the following change of variables, x3 → √
ηx3 +√

1− ηx4 and x4 → √
ηx4 −

√
1− ηx3. Bob’s state after the BS is given by the partial trace

of the state ρBE = |Ω〉〈Ω| with respect to Eve’s mode, ρ′B = trE(ρBE). In the position
basis we have

ρ′B =

∫

dx4〈x4|ρBE |x4〉 =
∫

dx3dx
′
3ρ

′
B(x3, x

′
3)|x3〉〈x′3| (44)

where

ρ′B(x3, x
′
3) =

∫

dx4χ
′(
√
ηx3 +

√

1− ηx4)χ
′∗(

√
ηx′3 +

√

1− ηx4)

×ϕ0(
√
ηx4 −

√

1− ηx3)ϕ
∗
0(
√
ηx4 −

√

1− ηx′3). (45)

Note that Eve’s state is ρ′E = trB(ρBE), which is simply obtained from equation (45) by
changing η → 1− η.
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Using the state ρ′B (ρ′E) Bob (Eve) proceeds as explained before to finish all the steps
of a single run of the teleportation-based CVQKD protocol. Bob displaces his mode by λ,
which depends on whether he assumed Alice teleported a real or imaginary state, finishing
the teleportation stage of the protocol. His state at this stage is ρB = D̂(λ)ρ′BD̂

†(λ).

Then he implements the last displacement D̂(γ), which depends on his first displacement
as explained before, and measures the intensity of his mode. Hence, Bob’s probability to
detect the vacuum state (no-light) is

QB
0 (p̃v, x̃u) = tr [|0〉〈0| D̂(γ)ρBD̂

†(γ)] = 〈−λ − γ|ρ′B | − λ− γ〉, (46)

where we have made explicit that QB
0 depends on the measurement outcomes of Alice when

η 6= 1, i.e., when we have a lossy channel. In the position representation we have

QB
0 (p̃v, x̃u) =

∫

dx3dx
′
3ϕ

∗
−λ−γ

(x3)ρ
′
B(x3, x

′
3)ϕ−λ−γ

(x′3). (47)

As before, we define the unconditional (no postselection) probability as

qB0 =

∫

dp̃vdx̃up(p̃v, x̃u)Q
B
0 (p̃v, x̃u) (48)

and in figure 10 we show its value for several values of loss.
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Fig. 10 Probability qB0 to detect the vacuum state for several values of loss (1− η), which

increases (η decreases) from top to bottom. The other parameters used to compute qB0 ,
namely, r, θ, gv, gu, and γ, were the optimal ones when the matching condition occurs. The
remaining parameter, Alice’s input, was set to −α (solid lines) and α (dashed lines).

C.2 Secure key rates

For direct reconciliation the secure key rate between Alice and Bob is

K = max{0, βIAB − IAE} = {0, ∆I}, (49)
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where β is the reconciliation efficiency, IAB the mutual information between Alice and Bob,
and IAE the mutual information between Alice and Eve. In what follows we will prepare the
ground for defining and computing those mutual informations for our problem. Also, since
the present teleportation-based CVQKD protocol is symmetric to both matching conditions,
we will work with the one where Alice teleported a real state and Bob implemented the real
displacement.

Let X and Y be two binary discrete variables, whose possible values for X are x = 0, 1
and for Y are y = 0, 1. If we associate variable X to Alice and adopt the convention
{−|α〉, |α〉} = {0, 1} we have

PX(0) = PX(1) = 1/2, (50)

where PX(x) is the probability distribution associated toX. This means that Alice randomly
chooses between the negative or positive coherent states at each run of the protocol.

If we associate variable Y to Bob we can define the conditional probability of Bob
assigning the value y to his variable if Alice assigned the value x as PY |X(y|x). For the
present protocol, and according to the encoding that Alice and Bob mutually agreed on for
the key, the four conditional probabilities are

PY |X(0|0) = qB0 (−α), (51)

PY |X(1|0) = 1− qB0 (−α), (52)

PY |X(0|1) = qB0 (α), (53)

PY |X(1|1) = 1− qB0 (α), (54)

where qB0 , the probability to detect the vacuum state, is given by equation (48). If we define

qB1 (α) = 1− qB0 (α), (55)

where qB1 is the probability to detect light, we have

PY |X(0|0) = qB0 (−α), (56)

PY |X(1|0) = 1− qB0 (−α), (57)

PY |X(0|1) = 1− qB1 (α), (58)

PY |X(1|1) = qB1 (α). (59)

Note that we have explicitly written the dependence of qBj , j = 0, 1, on Alice’s teleported
state to remind us that we should compute it using the appropriate sign for α.

We can understand the previous conditional probabilities as follows. If Alice teleports
the state | − α〉 (bit 0) and Bob displaces his mode by α, for a faithful teleportation he
will likely detect the vacuum state after that final displacement and assign correctly the bit
0. The chance for that happening is quantified by PY |X(0|0) = qB0 (−α). He will obviously
make a mistake, assigning erroneously the bit 1, if he does not detect the vacuum state. For
that reason we have PY |X(1|0) = 1 − qB0 (−α). In the same fashion, if Alice teleports the
state |α〉 (bit 1) and Bob displaces his mode by α, for a faithful teleportation he will very
likely not detect the vacuum state and will correctly assign the bit 1. This event occurs with
probability 1− qB0 (α), which implies PY |X(1|1) = 1− qB0 (α). He makes a mistake if he gets

the vacuum state and therefore PY |X(0|1) = qB0 (α).
Since the conditional probability is related to the joint probability distribution PXY (x, y)

by the rule PXY (x, y) = PX(x)PY |X(y|x) we have

PXY (0, 0) = qB0 (−α)/2, (60)

PXY (0, 1) = [1− qB0 (−α)]/2, (61)

PXY (1, 0) = [1− qB1 (α)]/2, (62)

PXY (1, 1) = qB1 (α)/2. (63)
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If we now use that PY (y) =
∑

x
PXY (x, y) we have

PY (0) = [1 + qB0 (−α)− qB1 (α)]/2, (64)

PY (1) = [1 + qB1 (α)− qB0 (−α)]/2. (65)

The mutual information between Alice and Bob is defined as

IAB =

1
∑

x=0

1
∑

y=0

PXY (x, y) log2

[

PXY (x, y)

PX(x)PY (y)

]

(66)

and a direct computation using Eqs. (50) and (60)-(65) gives

IAB = 1 + [qB0 log2 q
B
0 + (1 − qB0 ) log2(1− qB0 ) + qB1 log2 q

B
1

+(1 − qB1 ) log2(1− qB1 )]/2− [(1 + qB0 − qB1 ) log2(1 + qB0 − qB1 )

+(1 + qB1 − qB0 ) log2(1 + qB1 − qB0 )]/2. (67)

Here we have dropped the ±α dependence since qB0 is always computed with −α and qB1
with α. Note that IAB also depends on r, θ, gv, gu, and η. In order to obtain IAE we simply
replace η for 1− η in the expression for IAB since qBj → qEj if η → 1− η.

Using equation (67) and the equivalent one for IAE we can compute the secret key rate
K (equation (49)). Figure 4 in the main text was obtained this way, where we employed for
each curve a different value for η and for all of them the optimal values of r, θ, gv, and gu
assuming the real matching condition as given in figure 2 of the main text.

Note that when the loss is precisely 50% no key can be extracted since Bob’s and Eve’s
state are exactly the same, leading to IAB = IAE andK = 0. When the loss is exactly 100%,
the protocol does not work either. In this case Bob’s state is the vacuum state |0〉, i.e., he
receives no signal, and Eve can also operate on a vacuum state instead of the intercepted
signal. It is clear, thus, that Bob and Eve will have the same mutual information with Alice
and obviously K = 0.

This suggests a possible attack on the present protocol whenever we have high losses.
Indeed, Eve can work with a vacuum state instead of her share of the intercepted signal
since the former is closer to the state with Bob, whose state in a very lossy environment is
nearly the vacuum state. Therefore, we have to improve the security analysis when we have
great losses in order to handle the fact that Eve can work with both the intercepted signal
and the vacuum state. In this situation, the effective secure key rate that can be achieved
between Alice and Bob is

Ke = max{0,min{∆I,∆I0}}, (68)

where ∆I0 = βIAB − I0AE and I0AE is the mutual information between Alice and Eve

assuming Eve’s state is the vacuum. I0AE is easily obtained from the general expression for
IAE by setting η = 1.0, the case where Bob receives the whole signal and Eve gets nothing,
i.e., she has the vacuum state.

Table I of the main text was obtained maximizing Ke for several values of fixed r, η,
and β. Equations (27) and (28) was used for gu and gv and θ was determined in such a
way that Ke be maximal. As always, we assumed the real matching condition to fix the
remaining parameters needed to evaluate Ke, namely, Alice’s input was either | − α〉 or |α〉
and Bob’s final displacement was D̂(α).

D Further examples

Assuming squeezing is a cheap resource, we can let r, together with θ, be a free parameter
in the maximization of the key rate. In this scenario, we get the results in Figs. 11 and 13
for the effective optimal key rates for several values of loss. The optimal parameters leading
to such key rates are given in Figs. 12 and 14.
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Fig. 11 Here both r and θ are adjusted to get the optimal key rates with β = 0.8. We
assume the real matching condition.
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Fig. 12 Optimal parameters leading to the key rates in figure 11. In the maximization
process we have restricted r from 0 to 3 while θ could assume any value. The optimal gu
and gv are obtained using these values of θ and r to evaluate Eqs. (27) and (28).

It is interesting to note that whenever we have loss (η 6= 1.0) the optimal squeezing is
not the greatest value possible. For losses lower than 50% (η from 1.0 to 0.6) the greater
the loss the lower the key rate. Interestingly, the behavior for losses greater than 50% is
different. Once you cross the border of 50% loss, more loss means a better key rate. But this
trend stops at about 70% loss (η = 0.3), from which the key rate starts to decrease again
with loss. When the exact values of 50% or 100% loss is used, no effective key rate can be
achieved since Bob and Eve share the same level of information with Alice. We also remark
that in most of the cases the optimal squeezing is not greater than r = 2.0(17.4dB).

Finally, it is important to note that for losses lower than 50%, i.e., when more than half
of the signal sent from Alice reaches Bob, the effective key rate Ke is simply K as given by
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Fig. 13 Here both r and θ are adjusted to get the optimal key rates with β = 0.8. We
assume the real matching condition.
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Fig. 14 Optimal parameters leading to the key rates in figure 13. In the maximization
process we have restricted r from 0 to 3 while θ could assume any value. The optimal gu
and gv are obtained using these values of θ and r to evaluate Eqs. (27) and (28).

equation (49). However, when we go beyond the level of 50% loss, equation (68) starts to
be relevant. Depending on the value of |α|, either ∆I or ∆I0 is the lowest term that defines
the key. That is why in the cases with more than 50% loss the curves for Ke have an abrupt
behavior. And for very high loss, ∆I0 is always the lowest term.
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N. J.: Security of Continuous-Variable Quantum Key Distribution Against General At-
tacks. Phys. Rev. Lett. 110, 030502 (2013); Jouguet, P., Kunz-Jacques, S., Diamanti,
E.: Preventing calibration attacks on the local oscillator in continuous-variable quan-
tum key distribution. Phys. Rev. A 87, 062313 (2013); Huang, J.-Z., Kunz-Jacques,
S., Jouguet, P., Weedbrook, Ch., Yin, Z.-Q., Wang, Sh., Chen, W., Guo, G.-C., Han,
Z.-F.: Quantum hacking on quantum key distribution using homodyne detection. Phys.
Rev. A 89, 032304 (2014)

20. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473 (1994); Braun-
stein, S. L., Kimble, H. J.: Teleportation of Continuous Quantum Variables. Phys. Rev.
Lett. 80, 869 (1998); Furusawa, A., Sørensen, J. L., Braunstein, S. L., Fuchs, C. A.,
Kimble, H. J., Polzik, E. S.: Unconditional Quantum Teleportation. Science 282, 706
(1998)



Teleportation-Based Continuous Variable Quantum Cryptography 29

21. Yoshino, K.-i., Aoki, T., Furusawa, A.: Generation of continuous-wave broadband en-
tangled beams using periodically poled lithium niobate waveguides. Appl. Phys. Lett.
90, 041111 (2007); Lee, N., Benichi, H., Takeno, Y., Takeda, Sh., Webb, J., Hunting-
ton, E., Furusawa, A.: Teleportation of Nonclassical Wave Packets of Light. Science
332, 330 (2011)

22. Gordon, G., Rigolin, G.: Quantum cryptography using partially entangled states. Opt.
Commun. 283, 184 (2010)

23. Luiz, F. S., Rigolin, G.: Optimal continuous variable quantum teleportation protocol
for realistic settings. Annals of Physics 354, 409 (2015)

24. Becir, A., Wahiddin, M. R. B.: Tight bounds for the eavesdropping collective attacks
on general CV-QKD protocols that involve non-maximally entanglement. Quantum
Inf. Process. 12, 1155 (2013)


	1 Introduction
	2 The protocol
	3 Security analysis
	4 Conclusion
	A The modified CV teleportation protocol
	B The teleportation-based CVQKD protocol
	C Security analysis
	D Further examples

