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In this paper, firstly, we consider bipartite entanglement between each part of an optomechan-
ical cavity composed of one dimensional Bose-Einstein condensate (BEC). We investigate atomic
collision on the behavior of the BEC in the week photon-atom coupling constant, and use Bo-
goliubov approximation for the BEC. Secondly under above condition, we propose a scheme for
entanglement swapping protocol wich involves tripartite systems. In our investigation, we consider
a scenario where BECs, moving mirrors, and optical cavity modes are given in a Gaussian state with
a covariance matrix (CM). By applying the Bell measurement to the output optical field modes,
we show how the remote entanglement between two BECs, two moving mirrors, and BEC-mirror
modes in different optomechanical cavity can be generated.
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I. INTRODUCTION

In recent years, non-classical entanglement states play an
essential role for the communication and computation pro-
cessing [1]. Entangled states of continuous variable (CV)
systems are attractive for this purpose [2, 3]. As an exam-
ple of continuous variable systems, Gaussian states play a
key role in the quantum information since thay have been
formulated easily and they can be created and controlled
exprimentally.
Due to the extensive application of quantum entanglement,
several systems have been proposed for generating entangle-
ment between two nodes of a quantum system [4–8]. Entan-
glement swapping is one of the non-locality effects for gen-
erating quantum correlation between two non-interacting
distant systems [9–11]. This technique experimentally and
theoretically has been studied in Refs [12–15].
For nontrivial quantum communication tasks such as tele-
portation, entanglement is necessary to teleport the infor-
mation between two remote channels. So far, scientists have
studied some schemes for the generating entanglement be-
tween two distant systems [12–15]. Therefore, in this work,
we propose a hybrid scheme to show entanglement between
two distant nodes that never interact. We show a scenario
for entangling two remote and initially uncorrelated modes
by applying the Bell detection to the output optical field
modes. i. e. we present a general scheme to entangled
two part of remote systems (two BECs, two mirrors, and
BEC-mirror) by using a balanced beam splitter and two
homodyne detectors. In simple words, we use the quantum
correlations between two optical fields subparts that fully
disentangled in order to create entanglement between other
part of systems. In this scheme, the excitation of the ul-
tracold atoms plays the role of the vibrational mode of the
mirror in an optomechanical system [16].

This paper is organized as follows. In Sec. II we pro-
vide a brief theoretical description of the system under con-
sideration and then we study the quantum state transfer-
ring of output mode and BEC modes inside the one cavity
and quantify the entanglement between the output optical
modes by using the logarithmic negativity, while in Sec.

III, we firstly describe the Bell measurement protocol and
then we perform an analysis of the entanglement of two
remote systems. Finally, our conclusions are given in Sec.
IV

II. FORMULATION AND THEORETICAL
DESCRIPTION OF THE SYSTEM AT EACH NODE

We study a cigar-shaped gas of N ultracold bosonic two-
level atoms with transition frequency ωa and mass m in
a Fabry-Perot cavity with a movable end mirror with the
frequency of ωm as sketch in Fig. 1. The optical cavity
with length L, is driving at rate E, and the wave number
K = ωl/c, where ωl is the frequency of laser pump and
c is the speed of light. By assuming that the laser pump
ωl is far detuned from the atomic transition frequency ωa,
and ignoring spontaneous emission, we can adiabatically
eliminated the excited electronic state of the atoms. So the
many-body Hamiltonian of system in the frame rotating at
pump frequency is given by [17]

FIG. 1: (Color online) Trapped BEC atoms inside an
optomechanical cavity.

Ĥ = ~∆câ
†â+ i~E(â† − â) +

1

2
~ωm(p̂2 + q̂2)− ~gâ†âq̂

+

∫
dxψ†(x)Ĥ0ψ(x) + Ĥaa, (1)
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where p̂ and q̂ are the canonical position and momen-
tum of the moving mirror, ∆c = ωc − ωl is the detuning
between laser pump (ωl), and cavity field (ωc) frequences.
â is the destruction operator for the cavity photons, and
g = (ωc/L)

√
~/Mωm is the strength of coupling constant

of radiation pressure with mechanical mode, where M is ef-
fective mass of the moving mirror. Ĥaa and Ĥ0 are the in-
teraction Hamiltonian of two atoms, and the single-particle
Hamiltonian of an atom inside the periodic lattice gener-
ated by standing optical modes respectively

Ĥ0 = p̂2/2M + ~U0cos2(Kx)â†â,

Ĥaa =
1

2
Us

∫ L/2

−L/2
dxψ†(x)ψ†(x)ψ(x)ψ(x) (2)

The parameters U0 = g2
0/∆a and g0 are the optical lattice

barrier height per photon and the vacuum Rabi frequency

respectively. Us = 4π~2as
M , where as is the two-body s-wave

scattering length[18, 19].
In the weakly interacting regime, under the Bogoliubov ap-
proximation the atomic field operator can be expanded as
[20]

ψ(x) =

√
N

L
+

√
2

L
cos(2Kx)ĉ, (3)

where ĉ is Bogoliubov annihilation operator ([ĉ, ĉ†] = 1).
By substituting the atomic field operator, Eq.(3), into
the Hamiltonian of Eq.(1) and introducing the Bogoliubov

mode quadratures Q̂ = (ĉ+ ĉ†)/
√

2, and P̂ = (ĉ− ĉ†)/i
√

2
one obtains the following Hamiltonian [21]

Ĥ = δcâ
†â+ i~E(â† − â) +

1

2
~ωm(p̂2 + q̂2)− ~gâ†âq̂

+
1

2
~Ωc(P̂

2 + Q̂2) + ~Gâ†âQ̂+
1

2
~ωswQ̂2 (4)

Where δc = ∆c + NU0

2 and ωR = ~K2

2M are the effective
Stark shift detuning and the recoil frequency respectively.
ωsw = 8π~N

MLν2 is the scattering frequency and ν is the waist
of the optical potential. Ωc = 4ωR+ 1/2ωsw is the effective

detuning of BEC. G = ωc

L

√
~

4ωRms
is the coupling constant

of radiation pressure with Bogoliubov mode, and ms =
~ωc

2

L2NU0
2ωR

is effective mass of BEC mode.

A. Dynamics

The quantum stochastic Langevin equations (QLEs) for
the moving mirror, BEC and the cavity field variables are
obtained by adopting the dissipation-fluctuation theorem
[22]

ˆ̇q = ωmp̂,

ˆ̇p = −ωmq̂ + gâ†â− γmp̂+
√

2γmp̂in,

ˆ̇P = −(Ωc + ωsw)Q̂− γcP̂ −Gâ†â+
√

2γcQ̂in,

ˆ̇Q = ΩcP̂ − γcQ̂+
√

2γcP̂in, (5)

ˆ̇a = −(iδc + κ)â− i(gq̂ −GQ̂)â+ Ed +
√

2κâin,

where γm is the moving mirror damping rate, γc is the
dissipation of the collective density excitations of the BEC
inside of optical lattice, and âin(t) is the cavity field input
noise which obeys the white-noise correlation functions [22]

〈âin(t)â†in(t′)〉 = δ(t− t′), 〈â†in(t)âin(t′)〉 = 0, (6)

〈b̂in(t)b̂†in(t′)〉 = δ(t− t′), 〈b̂†in(t)b̂in(t′)〉 = 0,

where we have set N = [exp(~ωc/kBT ) − 1]−1 ≈ 0, since
~ωc/kBT � 1 at optical frequency. However, ξ(t) is the
Brownian noise acting on the moving mirror, with correla-
tion function [23, 24]

〈ξ̂(t)ξ̂(t′)〉 =
γm
ωm

∫
dω

2π
e−iω(t−t′)ω

[
coth

( ~ω
2kBT

)
+ 1
]
, (7)

where kB is the Boltzmann constant, and T the temper-
ature of the reservoir. In a very high mechanical quality
factor regime ( Q = ωm/γm →∞), the mechanical noise of
mirror is characterized by white thermal noise [25]

〈ξ̂(t)ξ̂(t′) + ξ̂(t′)ξ̂(t)〉
2

' γm(2n̄m + 1)δ(t− t′) ,

with mean excitation number n̄m = [exp(~ωm/kBT )−1]−1.

Q̂in and P̂in are the thermal noise inputs for the Bogoli-
ubov mode of BEC which satisfy the Markovian correlation
functions [26, 27]

〈P̂in(t)P̂in(t′)〉 = 〈Q̂in(t)Q̂in(t′)〉 = 2γc(nc + 1/2)δ(t− t′)

where nc = [exp(~ωB/kBTc)− 1]−1 is the number of ther-
mal excitations for the Bogoliubov mode which oscillates
with frequency ωB =

√
Ωc(Ωc + ωsw), and Tc is the effec-

tive tempereature of BEC.
Quadrature operators of system can be represent as the
u = [q̂, p̂, Q̂, P̂ , X̂, Ŷ ]T , where the quadratures of the op-

tical cavity are defined as X̂ = (â + â†)/
√

2 and Ŷ =

i(â† − â)/
√

2. Since the cavity is pumped by an intense
laser then we linearized the QLEs given in Eq.(5) around
the mean values, i.e,. uj = uj,s + δuj(t), where uj,s are the
semiclassical mean values and δuj(t) are fluctuation oper-
ators with zero-mean value. The steady state are obtained

qs =
g

ωm
α2, ps = 0,

Qs = − Gα2

Ωc + ωsw +
γ2
c

Ωc

, (8)

Ps =
γc
Ωc
Qs,

α =
E√

∆2 + κ2
,

where ∆ = δc − gqs + GQs is the effective detuning and
α = α∗ is the mean value of the optical filed mode.
The dynamics of the fluctuation operators , δu(t) =

[δq̂, δp̂, δQ̂, δP̂ , δX̂, δŶ ]T , are given by the linearized QLEs
which one can write as

δu̇(t) = Aδu(t) + n(t) (9)
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where

A =


0 ωm 0 0 0 0

−ωm −γm 0 0
√

2gαs 0
0 0 −γc Ωc 0 0

0 0 −(Ωc + ωsw) −γc −
√

2Gαs 0
0 0 0 0 −κ ∆√

2gαs 0 −
√

2Gαs 0 −∆ −κ

 ,

(10)
is the drift matrix and n(t) = [0, γm(2nm + 1), γc(2nB +
1), γc(2nB + 1), κ, κ]T defines the vector of the noises. We
note that the current system can reach a steady state after
a transient time when all the eigenvalues of the drift matrix
A have negative real value according to the Routh-Hurwitz
criterion [28].

B. Optomechanical entanglement of output modes

As we mentioned in Sec. II, the basic ingredient for cre-
ating a quantum link between the two distant system is
that the state at each remote node must possess a nonzero
entanglement between the two remote mode and a travel-
ling optical mode. i.e by using the travelling output modes,
any quantum communications can be implemented rather
than intracavity ones. So it is important to study how
the entanglement generated within the cavity between the
BEC modes and light or mirror and light are transferred
to the output field. Due to the linearized dynamics of the
fluctuations and since all noises are Gaussian the steady
state is a zero-mean Gaussian state which is fully charac-
terized by the stationary correlation matrix V. For analy-
sis of entangling of the vibrating mirror and BEC modes
with detectable output field of an optical cavity, we use
an expression for output optical fields. The output mode
of the optical cavity is given by the standard input-output
relation âout =

√
2κâ − âin. One can also define the se-

lected output mode by means of the causal filter function

âfilt =
∫ t
t0
F (t − s)âout(s)ds, where the causal filter func-

tion F (t) =
√

2/τexp[−(1/τ + iΩ)t]Θ(t) is characterized
by central frequency Ω, bandwidth 1/τ , and the Heaviside
step function Θ(t) [29–31]. In the frequency domain, the
stationary CM for the quantum fluctuations of the mirror,
BEC, and the output mode of the optical cavity variables,
ufilt(t) = [q̂, p̂, Q̂, P̂ , X̂filt, Ŷ filt]T , takes the form

V = lim
t→∞

1

2

〈
ufilt
i (t)ufilt

j (t) + ufilt
j (t)ufilt

i (t)
〉

=

∫
dωΥ(ω)

(
M̃(ω) + P

)
×D

(
M̃(ω)† + P

)
Υ†(ω), (11)

for each node, where M̃(ω) = (iωI + A)−1, P =
Diag[0, 0, 0, 0, 1

2κ ,
1

2κ ] and Υ(ω) is the Fourier transform of

Υ(t) =


δ(t) 0 0 0 0 0

0 δ(t) 0 0 0 0
0 0 δ(t) 0 0 0
0 0 0 δ(t) 0 0
0 0 0 0 R −I
0 0 0 0 −I R

 , (12)

where R =
√

2κRe[F (t)] and I =
√

2κIm[F (t)] are deter-
mined by the causal filter functions F (t) with bandwidth
1/τ and central frequency Ω.
The bipartite entanglement between the different parts of
subsystems is characterized by the logarithmic negativity

EN = max[0,− ln(2η−)], (13)

where η− = 2−1/2
[
σ −

√
σ2 − 4detV′

]1/2
is the least sym-

plectic eigenvalue of the partially-transposed V′ of the V,
associated with the selected bipartition, obtained by ne-
glecting the rows and columns of the uninteresting mode,

V′ =

(
M N
N T M′

)
, (14)

and σ = detM+ detM′ − 2detN .
Firstly, we investigate the quantum state transfer from

BEC and mechanical modes to output field in one cavity.
Here beside the generated Stokes and anti-Stokes motional
sidebands by means of mechanical resonator, the motion
of collective modes of BEC can generate Stokes and anti-
Stokes sidebands, consequently modifying the cavity output
spectrum. Therefore it may be nontrivial to specify which is
the optimal frequency bandwidth of the output cavity field
that carries most of entanglement generated within the cav-
ity. The output cavity field spectrum associated with the

photon number fluctuations S(ω) = 〈δaout(ω)
†
δaout(ω)〉 is

shown in Fig.2a, where we have considered a parameter
regime with the laser pump power 50mW, the cavity has a
length L = 1 mm, a wavelength of λ = 1080 nm with fi-
nesse F = 3×104, and the damping rate πc/LF , cavity de-
tuning ∆ = −ωm. The end mirror of the cavity with mass
m = 50ng oscillates with the frequency ωm = 2π×107Hz at
the temperature Tm = 0.04K. The recoil frequency of BEC
is ωR/2π = 3.57× 103 with dissipation of collective density
excitations γc = 0.001κ, and temperature Tc = 1µK. Fig.
2a shows the power spectrum of output field against the
normalized frequency has four peaks which are resonance
with moving mirror and BEC Bogoliubov modes. In Fig.
2b we plot the spectrum of the output field for two different
values of atomic collision ωsw = 0, and ωsw = 0.5. Fig. 2b
shows the atomic interaction makes shift in the cavity res-
onance frequency and consequently reduces the cavity field
intensity, and hence the decrease of the cavity output opti-
cal field would be a direct measure of the atom-atom inter-
action of the BEC. In order to study the BEC and vibrating
mirror and BEC Bogoliubov entanglement with output op-
tical field, we consider logarithmic negativity EN given by
Eq. (13) for V′. In Fig. 3 the BEC and mirror entan-
glement with output optical field is plotted versus Ω/ωm.
When the bandwidth is not too large (ε = ωmτ = 10),
the mechanical and BEC modes are significantly entangled
with only Ω = −ωm and Ω = −ωB ' −0.6ωm respectively.
Also by comparing with previous works, the entanglement
of the output mode is significantly larger than its intra-
cavity counterpart [21, 32]. So this analysis shows that it
is possible to evaluate the entanglement properties of mul-
tipartite optomechanical system composed of BEC atoms
and output modes for quantum communication application
involves the manipulation of travelling optical fields. In
the next section, we use two of this system for generation
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(a)

(b)

FIG. 2: (Color online) (a) Normalized cavity output
power spectrum versus the normalized frequency ω/ωm.
(b) Stokes sideband of cavity output spectrum for two
different values of collision parameters ωsw = 0 (dashed
line), and ωsw = 0.5ωR (solid line) with the laser pump
strength 50mW, the cavity has a length L = 1 mm, a

wavelength of λ = 1080nm with finesse F = 3× 104, and
the damping rate γm = πc/LF , cavity detuning

∆ = −ωm. The end mirror of the cavity with mass
m = 50ng oscillates with the natural frequency

ωm = 2π × 107Hz at the temperature Tm = 0.04K. The
recoil frequency of BEC is ωR/2π = 3.57× 103 with

dissipation of collective density excitations γc = 0.001κ,
and temperature Tc = 1µK.

entanglement between remote modes. Each system is ini-
tially composed of a pair of independent tripartite entan-
gled states, one possesses by Alice and another by Bob.
Now, Alice and Bob who have located at remote sites can
utilize this system to prepare tripartite state, and each of
them shares their optical mode to Charlie. The output op-
tical field will be manipulated by Charlie to creating swap-
ping entanglement between two remote subsystems.

III. ENTANGLING TWO REMOTE
NON-INTERACTING SYSTEMS

A. Swapping entanglement protocol

In order to generate an entanglement state of two ini-
tially uncorrelated distant systems, we employ entangle-

FIG. 3: (Color online) Logarithmic negativity EN of the
CV bipartite system formed by the moving mirror (m),

BEC mode (b) and a single cavity output field (f) versus
the central frequency of the detected output mode Ω/ωm.

The other parameters are the same as in Fig 2. The
mechanical and BEC modes are significantly entangled

only with the first Stokes sideband at Ω = −ωm and
Ω = −ωB ' −0.6ωm respectively.

ment swapping [33], and apply it to the case when the two
remote sites possess each a CV optomechanical system com-
posed of BEC atoms(see Fig. 1). In a such hybrid optome-
chanical system, an ensemble of ultracold atoms inside an
optomechanical cavity can couple to the cavity field, where
the excitation of the BECs plays the role of the mechani-
cal mode of the mirror in an optomechanical system. Like
standard optomechanical systems, the coherent motion of
ultracold atoms causes a nonlinearity, and the atomic col-
lisions change the resonance frequency of the cavity[16]. In
our systems, atomic and mechanical coupling with optical
field are the basic ingredient for generating entanglement
between the two distant systems. The whole system is com-
posed of two seperable and independent tripartite bosonic
modes, where each of them possessed by Alice and Bob.
Alice and Bob are located at remote sites and prepare a
tripartite state, and each shares one modes (optical modes)
with Charlie, who is located for simplicity halfway between
them. Charlie can then perform a Bell measurement on
the two optical modes and consequently entangle the two
distant BEC, and mechanical modes of moving mirrors by
means of CV entanglement swapping.

Here, we consider an ideal Bell measurement protocol ap-
plied to the last output optical modes of each cavity with
balanced transmissivity T = 1/2, which allows Charlie to
entangle the remote modes. We assume Alice and Bob ini-
tially possess the same CV tripartite state and each of them
shares one travelling output optical mode with Charlie, who
is located for simplicity halfway between them. The covari-
ance matrix of the tripartite bosonic modes at each site is
fully characterized in Eq. (11). The 12 × 12 covariance
matrix of the whole system, composed of two independent
tripartite bosonic modes, can be written in the blockform

V =

(
A C

CT B(2)

)
, (15)

where the 8× 8 matrix A is the reduced CM of the BECs,
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and mechanical modes, and

C =
(

C1 C2

)
, (16)

is a rectangular (8× 4) real matrix, describing the correla-
tions between the first two remote modes and the output
optical modes, and

B(2) =

(
B1 D

DT B2

)
, (17)

is the reduced CM of the output optical modes received by
Charlie (labelled by 1 and 2). For more simplification, we

write down the reduced covariance matrix B(2) of output
optical modes by setting

B1:=

(
α1 α3

α3 α2

)
, B2 :=

(
α′1 α′3
α′3 α′2

)
,

D:=

(
β1 β3

β3 β2

)
.

Now, the output optical modes to Charlie are passed to
a beam spliter of transmissivity T . Then, Charlie applies
a Bell-like measurement on the received optical modes by
appliying homodyne detections on them as depicted in Fig.
4. The state of remaining remote quadrature fluctuations of
BECs and mechanical modes of two remote systems would
be a Gaussian state with CM of the form

V = A− 1

detΓ

2∑
i,j=1

CiKijC
T
j :=

(
A C
CT B

)
, (18)

where

K11:=

(
(1− T )γ2

√
T (1− T )γ3√

T (1− T )γ3 Tγ1

)
,

K22:=

(
Tγ2 −

√
T (1− T )γ3

−
√
T (1− T )γ3 (1− T )γ1

)
,

K12= KT
21 :=

(
−
√
T (1− T )γ2 (1− T )γ3

−Tγ3 −
√
T (1− T )γ1

)
,

with

Γ :=

(
γ1 γ3

γ3 γ2

)
,

and

γ1 := (1− T )α1 + Tα′1 − 2
√
T (1− T )β1,

γ2 := Tα2 + (1− T )α′2 + 2
√
T (1− T )β2,

γ3 :=
√
T (1− T )(α′3 − α3)− (1− T )β3 + Tβ4.

A , B describe the remaining BECs and mechanical
modes after Bell-like detection, and C referred to the
cross-correlation elements. In order to study the bipar-
tite entanglement between each two remote modes, we
consider logarithmic negativity eq.(13), where η− is the
least partially-transposed symplectic eigenvalue of V , and
σ = detA + B + 2C.

FIG. 4: (Color online) Scheme of the entanglement
swapping protocol for entangling of two distant hybrid

optomechanical cavity containing BEC atoms by applying
a Bell-like detection.

B. Entanglement of the BECs and mechanical
resonators by swapping

Here we now utilize the results obtained in the section
III A to show that how we can entangled of two distant
remote modes in two independent cavity which are phys-
ically separated by implementation of Bell measurement.
The scheme is shown in Fig 4. The parameters of sys-
tem must be chosen in such a way that the tripartite sys-
tem formed by BECs (bA, bB), mechanical modes (mA,
mB) and optical fileds (fA, fB) satisfy the Routh-Hurwitzr
stability criterion [28]. Therefore, we have to determine
an experimentally achievable parameter set in which such
conditions are satisfied so that the proposed generalized
swapping protocol can be successfully implemented. The
entanglement between BEC and output field and also me-
chanical resonator and output optical field employed for the
Bell measurement. By appropriately choosing the detuning
and filtering the appropriate output modes, we can satisfy
stationary condition and generate entanglement between
non-interacting systems. We generalized the model to the
symmetric case of initially identical state at Alice and Bob.
One can modifies the coupling constant of each subsystem
and changes the model to the same or different subsys-
tems. Firstly, we sketched Fig. 5 for finding the optimal
filtering bandwidth. Fig. 5 shows the logarithmic nega-
tivity EN between different bipartite modes as a function
of the normalized filtering bandwidth ε = ωmτ , obtained
after the Bell measurement. It can be seen from the figure
that logarithmic negativity achieves its maximum value at
the optimal value ε ' 10 for (bA, bB), (mA, mB), and
(fA, fB), but It was not seen any entanglement between
the subsystems - (mA, bA), (mB , bB) - at each node. This
means that, in practice, by appropriately filtering the out-
put field one realize an effective entanglement generation
because of Bell measurement at different nodes. A more
interesting situation is depicted in Fig. 6 which shows how
entanglement between the remote systems depends on the
frequency of detected output modes. In Fig. 6a the entan-
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FIG. 5: (Color online) Logarithmic negativity EN of the (a) (bA, bB) , (b) (mA,mB) , and (c) (mA, bB) modes versus
inverse bandwidth ε. The other parameters are the same as in Fig. 2.

glement between the Bogoliubov modes of BECs (bA, bB)
inside the two cavity has been plotted versus the frequency
of the detected output modes Ωi/ωm (i=1,2). This figure
shows that the maximum entanglement between the Bogoli-
ubov modes transfer around the Ω1 = Ω2 = −ωB which is
correspond to Ω1 = Ω2 ' −0.6ωm. So according to the
Fig. 3 the maximum entanglement between the output
field and BEC causes the maximum entanglement between
(bA, bB) modes after the Bell detection for filtering inverse
bandwidth ε ' 10. In Fig. 6b the entanglement between
the mirror modes (mA,mB) of the two cavity has been
plotted versus the central frequency of the detected output
mode Ωi/ωm (i=1,2). The maximum of entanglement oc-
curs around the Ω1 = Ω2 = −ωm. In fact, Figs. 6a, 6b show
the optomechanical entanglement is large when we drive
the cavity Bell mode (output filed) with a blue-detuned
laser (Ωi = −ωm for mechanical resonator and Ωi = −ωB
for BEC modes (i=1,2)). Also in Fig. 6c the entangle-
ment between the mirror and BEC modes of the two cavity
(mA, bB) has been plotted versus the central frequency of
the detected output mode Ωi/ωm (i=1,2). The maximum
of entanglement occurs around the Ω1 = −ωB ' −0.6ωm
and Ω2 = −ωm for mirror and BEC respectively. Figs.
(6(d)-(f)) are the same the Figs. (6(a)-(c)), when the cou-
pling constant of other subsystems is zero. It qualitatively

has shown that the manner of entanglement is very similar
to Figs. (6(a)-(c)), and generally we can study the gen-
eration of entanglement between same or different remote
modes by turning off (on) the coupling constant between
subsystems. For instance, by turning off the coupling con-
stant of mirror in the Alice system gA = 0, and BEC in the
Bob system GB = 0, we can choose different remote sys-
tems for some applications of quantum informations like
quantum teleportation. Fig.7 we plot the entanglement
between (a) (bA, bB), (b) (mA,mB), and (bA,mB) modes
against the central frequency of the detected output mode
Ω1/ωm for two different atomic collisions ωsw. This figure
shows s-wave scattering makes the shift of resonance fre-
quency and causes the the entanglement between (bA, bB),
and (bA,mB) to decrease. Hence the decrease of the cav-
ity output intensity causes the weaker entanglement be-
tween BECs after the Bell measurement, and also between
two moving mirrors. But against the Fig.7 (a) and (c),
in Fig.7(b) the atom-atom interaction dose not change the
cavity resonance frequency.
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FIG. 6: (Color online) Logarithmic negativity EN of the (a) (bA, bB), (b) (mA,mB), and (c) (mA, bB) modes versus the
central frequency of the detected output mode Ωi/ωm (i=1,2). The maximum of entanglement occurs around the stokes
Ωi = −ωB ' −0.6ωm for BECs, Ωi = −ωm for mirrors. (d-f) same to (a-c), but when the coupling constants have been
turned off: (d) (gA = gB = 0), (e) (GA = GB = 0), and (f) (GA = gB = 0).The other parameters are the same as in Fig.

3.

(a) (b) (c)

FIG. 7: (Colour on line) Entanglement between (a) (bA, bB), (b) (mA,mB), and (bA,mB) modes against the central
frequency of the detected output mode Ω1/ωm for two different values of collision parameters ωsw = 0, and ωsw = 0.5ωR

of BEC atoms.

IV. CONCLUSIONS

In this paper firstly we have investigated the entan-
glement between the different bipartite systems formed
by BEC, mechanical, and output optical modes, which
is important from a practical point of view because any
quantum-communication application involves the manipu-

lation of travelling optical fields. It has been shown that the
Stokes output mode is strongly entangled with the BEC,
and mechanical modes, and also there is no entanglement
between the mechanical and BEC modes. Secondly we have
shown that entanglement swapping protocol can be imple-
mented using two distant hybrid optomechanical system.
We have considered two remote optomechanical cavity com-
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posed of one dimensional ultracold atoms inside the cavity
and performed Bell measurement for entangling two same
or different remote systems. It was shown that Bell mea-
surement entangled all of the subsystems except the BEC
and mechanical mode in the position of each node. Also,
we investigated the effect of atomic collision on the entan-
glement of different remote modes. It has been shown that
an increase in the s-wave scattering frequency caused the
entanglement of the remote systems to decrease. Besides,
an increase in the s-wave scattering frequency caused shift

the resonance frequency of cavity in the cases of (bA, bB),
and (bA,mB).
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[18] J. K. Asbóth, P. Domokos, H. Ritsch, and A. Vukics, Phys.

Rev. A 72, 053417 (2005).
[19] C. Maschler and H. Ritsch, Phys. Rev. Lett. 95, 260401

(2005).
[20] D. Nagy, P. Domokos, A. Vukics, and H. Ritsch, Eur. Phys.

J. D 55, 659 (2009).
[21] A. Dalafi, M. H. Naderi, M. Soltanolkotabi, and S. Barzan-

jeh, J. Phys. B: At. Mol. Opt. Phys 46, 235502 (2013).
[22] P. Drummond and C. Gardiner, J. Phys. A. Math. Gen. 13,

2353 (1980).
[23] M. Pinard, Y. Hadjar, and A. Heidmann, Eur. Phys. J. D

7, 107 (1999).
[24] C. Law, Phys. Rev. A 51, 2537 (1995).
[25] R. Benguria and M. Kac, Phys. Rev. Lett. 46, 1 (1981).
[26] A. Dalafi, M. Naderi, M. Soltanolkotabi, and S. Barzanjeh,

Phys. Rev. A 87, 013417 (2013).
[27] K. Zhang, W. Chen, M. Bhattacharya, and P. Meystre,

Phys. Rev. A 81, 013802 (2010).
[28] I. Gradshteyn and I. Ryzhik, Academic Press: New York

(1980).
[29] C. Genes, A. Mari, P. Tombesi, and D. Vitali, Phys. Rev.

A 78, 032316 (2008).
[30] S. Barzanjeh, S. Pirandola, and C. Weedbrook, Phys. Rev.

A 88, 042331 (2013).
[31] M. Eghbali-Arani, H. Yavari, M. Shahzamanian, V. Gio-

vannetti, and S. Barzanjeh, JOSA B 32, 798 (2015).
[32] C. Genes, A. Mari, P. Tombesi, and D. Vitali, Phys. Rev.

A 78, 032316 (2008).
[33] G. Spedalieri, C. Ottaviani, and S. Pirandola, Open. Syst.

Inf. Dyn. 20, 1350011 (2013).

http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/ 10.1103/PhysRevLett.82.1975
http://dx.doi.org/ 10.1103/PhysRevLett.81.3631
http://dx.doi.org/10.1103/PhysRevLett.85.2392
http://dx.doi.org/10.1103/PhysRevLett.85.2392
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2014.08.017
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2014.08.017
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2010.01.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2010.01.003
http://dx.doi.org/10.1103/PhysRevLett.80.3891
http://dx.doi.org/ http://dx.doi.org/10.1016/j.aop.2016.06.018
http://dx.doi.org/http://dx.doi.org/10.1016/j.optcom.2014.08.053
http://dx.doi.org/http://dx.doi.org/10.1016/j.optcom.2014.08.053
http://dx.doi.org/10.1103/PhysRevA.89.022331
http://dx.doi.org/10.1103/PhysRevA.89.022331
http://dx.doi.org/10.1103/PhysRevLett.109.143601
http://dx.doi.org/10.1103/PhysRevLett.109.143601
http://dx.doi.org/10.1103/PhysRevLett.93.250503
http://dx.doi.org/10.1103/PhysRevLett.93.250503
http://dx.doi.org/ 10.1103/PhysRevLett.94.220502
http://dx.doi.org/ 10.1103/PhysRevLett.94.220502
http://dx.doi.org/10.1103/PhysRevA.87.013417
http://dx.doi.org/http://dx.doi.org/10.1016/j.optcom.2004.10.038
http://dx.doi.org/ 10.1103/PhysRevA.72.053417
http://dx.doi.org/ 10.1103/PhysRevA.72.053417
http://dx.doi.org/10.1103/PhysRevLett.95.260401
http://dx.doi.org/10.1103/PhysRevLett.95.260401
http://stacks.iop.org/0953-4075/46/i=23/a=235502
http://dx.doi.org/10.1103/PhysRevA.78.032316
http://dx.doi.org/10.1103/PhysRevA.78.032316
http://dx.doi.org/10.1142/S123016121350011X
http://dx.doi.org/10.1142/S123016121350011X

	Entanglement of two hybrid optomechanical cavities composed of BEC atoms under Bell detection 
	Abstract
	I Introduction
	II Formulation and Theoretical Description of The System at each node
	A Dynamics
	B Optomechanical entanglement of output modes

	III Entangling two remote non-interacting systems
	A Swapping entanglement protocol
	B Entanglement of the BECs and mechanical resonators by swapping

	IV conclusions
	 Acknowledgements
	 References


