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Abstract
In this paper, we investigate the relationship of quantuept&tation in quantum informa-
tion science and the Birman—Murakami—Wenzl (BMW) algelrdoiv-dimensional topol-
ogy. For simplicity, we focus on the two spin-1/2 represtateof the BMW algebra, which
is generated by both the Temperley—Lieb projector and thgYBaxter gate. We describe
quantum teleportation using the Temperley—Lieb projeztalthe Yang—Baxter gate, respec-
tively, and study teleportation-based quantum computatging the Yang—Baxter gate. On
the other hand, we exploit the extended Temperley—Liebrdiagnatical approach to clearly
show that the tangle relations of the BMW algebra have a abinterpretation of quantum
teleportation. Inspired by this interpretation, we constra general representation of the
tangle relations of the BMW algebra and obtain interestaqgresentations of the BMW al-
gebra. Therefore our research sheds a light on a link betegpgantum information science
and low-dimensional topology.
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1 Introduction

Quantum entanglementl[1, 2] is the key reason why the quaitfarmation processing outper-
forms the classical information processing, and has bedalywexploited in quantum information
and computation science. With the help of quantum entarginan unknown quantum state can
be transported from one place to another place, dubbed umateieportation([3,14,15,16]. On
the other respect, there are natural similarities betwe@niym entanglement and topological en-
tanglement[[7 18], where the latter characterizes topokigionfigurations of links or knots|[9].
Nontrivial unitary solutions of the Yang—Baxter equatidg], called the Yang—Baxter gates, have
been introduced to clarify such similaritiés [11) 12} [13]. Tzhey can detect knots or links and can
be viewed as quantum gates to perform universal quantum ai@tign as well. Note that a thor-
ough understanding about a relation between quantum dataagt and topological entanglement
remains unclear.

The Yang—Baxter equation [10] arose in the study of both dirdensional quantum many-
body systems and vertex models in statistics physics, andoiution naturally gives rise to a
representation of the braid group describing links or kif@ks Both the Temperley—Lieb algebra
[15] and the BMW algebrz [16] are exploited in the systematinstruction of solutions of the
Yang—Baxter equation [17, 18,.]19]. The Temperley—-Lieb lalgés associated with solutions of
the Yang—Baxter equation with two distinctive eigenvalaied is related to the Jones polynomial in
knottheory[[9], whereas the BMW algebra is associated wilhit®ons of the Yang—Baxter equation
with three distinctive eigenvalues and is related to thefftaan polynomial in knot theory ]9].
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Previous research has extensively studied the relatiprigtiveen quantum teleportation, the
Temperley—Lieb algebra and the Yang—Baxter equatioh[[2), Zhe extended Temperley-Lieb
diagrammatical approach [20,/121] is devised to chara¢oigological features of quantum entan-
glement and quantum teleportation. However, the formeyaneh either concentrates on the topic
of quantum teleportation using the Yang—Baxter gate or ertdbic of quantum teleportation us-
ing the Temperley—Lieb projector. Since a representatioineoBMW algebra is generated by both
the Yang—Baxter gate and the Temperley—Lieb projectorethemains a natural question to be
answered: what about quantum teleportation using the BMy&tah? In this paper, we investigate
this problem and expect to find something novel which is nesented in[[20, 21].

In the two spin-1/2 representation of the BMW algebra [23, @& view the Temperley—Lieb
projector as a two-qubit quantum measurement operatorhendrtitary braid representation as a
two-qubit entangling gate (the Yang—Baxter gate). We shmawthe Temperley—Lieb projector and
the Yang—Baxter gate are capable of performing the quarglepdrtation protocol, respectively.
Besides, we study the teleportation-based quantum comu{24,25] using the Yang—Baxter
gate. Furthermore, we realize that the tangle relationsidefithe BMW algebra involving both
the Temperley—Lieb projector and the Yang—Baxter gate gae to the teleportation protocol
directly. Moreover, we are able to construct interestiqgesentations of the BMW algebra in the
extended Temperley—Lieb diagrammatical approach[[20d#fdrent from the representation in
[22,123].

The paper is organized as follows. Secfidn 2 reviews the piro 52 realization of the BMW
algebra. Sectiop]3 ad 4 perform the quantum teleportatioiogol via the Temperley—Lieb pro-
jector and the Yang—Baxter gate, respectively. Setlionabait the teleportation-based quantum
computation set by the Yang—Baxter gate. Sediion 6 presemtguantum teleportation interpre-
tation of the tangle relations in the BMW algebra. SecfiibreZalibes a method of constructing a
general representation of the tangle relations of the BM§élada. Sectiohl8 is on concluding re-
marks. Four appendices are added to complete the paperndipp8 reviews a relation between
the Brauer algebra and quantum teleportation [20], sineeBii\W algebra is a deformation of
the Brauer algebra [26]. AppendiX B collects the extendadferley—Lieb configurations of the
Yang—Baxter gate which are not in the main context of the pagpendiX ¢ shows the procedure
of constructing interesting representations of the BMWehla. AppendiXxD introduces the new
conventions and notations to simplify some complicateélalgic relations in the paper.

2 Review on the BMW algebra

In this section, we make a brief sketch on the definition oBMAV algebral[16] and its two spin-
1/2 representation [22] in the viewpoint of quantum infotimaand computation. Meanwhile, we
set up notations and conventions for the whole paper. Intiaddive make a simple study on the
Brauer algebra [26] in Appendix]A whose deformation is the\BMlIgebra.

The BMW algebraB,, (w, o) [16] contains two complex parametarsando, and it has two
types of generators: the one denoted,asssociated with the Temperley—Lieb algebra [15] and the
other one denoted &g associated with the braid group [9], with= 1, ..., n — 1. The Temperley—
Lieb idempotentg; satisfy the defining relations of the Temperley—Lieb algebr

2 _ _ 2
e; = e, eieir1e; =d “e;,

€;€; = €5€4, |’L —j| Z 2, (1)

with d called the loop parameter. The braid generatpsatisfy the defining relations of the braid

group,
bibi+1b; = bix1b;bi+1, @)
bibj = b;bi, i —jl =2

The first type of the mixed relations between the Temperleb-idempotentg; and the braid



generator$; are given by
bi — bt = w(ll — de;),
eib; = bie; = oe;, (3
bit+1€:bix+1 = bi_lei:tlbi_la

wherel denotes the identity operator, and the second type of thednidations are given by

bit+1biei+1 = e;bix1b; = deieiﬂ:l; (4)

which are called the tangle relations in this paper. Notettiexe is a constraint relation among the
three parameter§ o, w given byd = 1 — (0 — o~ 1) /w.

A tensor product representation of the BMW algeByg(w, o) can be in general constructed
in the following way. The Temperley—Lieb idempotentsand the braid generatobs assume the
respective forms,

€; n@(i—l) ® E ® ﬂ@(n—i—1)7 (5)
bi — ﬂ@(i_l) ® B ® ﬂ@(n—i—l), (6)

where the symboFE is called the Temperley—Lieb matrix and the symiabis called the braid
matrix. It means that the Temperley-Lieb idempotentnd the braid generatobsare acting on
the vector space of thgh and: + 1th sites. Furthermore, the braid matiikhas three distinctive
eigenvalues denoted as, A\» and\s with the constraint relation, A3 = —1. The parameter is
setass = A1, and the parameter is set agv = Ay + As.

A spin-1/2 representation is characterized by the two-dsiaal Hilbert spacé{, with the
basis statef)) and|1). In convention, the stat@®) stands for spin up and the stdte for spin
down. A single qubit in quantum information and computaffdyi2] can be physically realized
as a spin-1/2 representation, and its quantum state haerinéd) = a|0) + b|1) with complex
numbers: andb satisfying|a|? + |b|? = 1. A quantum gate is defined as a unitary transformation
acting on qubits, for example, a single qubit gate includhegyidentity operatofi,, the PauliX
gate and the Paulf gate given by

v (30) x-(28) (3 %) o

Note thatZ|i) = (—1)%|i) with i = 0,1 and the Paull” gate is defined a§ = Z X.

A two spin-1/2 representation, which can be recognized dysigal realization of a two-qubit
system, is described by the four-dimensional Hilbert sgage H» with the tensor product basis
statesli, j) or |ij) with i, 5 = 0,1. An example for the two spin-1/2 representation of the BMW
algebra has been shown n]22], in which the associated Teeyp&ieb matrixE has the form

1 e jemiP =29
1| —iet® 1 1 —je~¢
E=71 —iee 1 1 —jei |~ )
e2i® et et 1

with the real numbeg, and the associated braid matfxhas the form

1 —eTi gm0 _e72i¢
;37 - .
et e'? 1 -1 e i
B = 9 ei¢ -1 1 e*id’ ) (9)
—e2i¢ it _ei® 1

with three distinctive eigenvalues = /4, \y = €7/ and A3 = €™/, \, being double-
degenerated. The parametersv andd in the BMW algebraB,, (w, o) can be calculated as

c=M=e"" w=X+X=V2i, d=1—(0—0)/w=2. (10)



In this paper, since the Temperley—-Lieb matkbsatisfies the idempotent relatidit = E, it
is viewed as a two-qubit projective measurement operatorth® other respect, the braid matrix
B is unitary satisfyingB'B = BB' = 14, and thus it is a two-qubit quantum gate[[1, 2], called
the Yang—Baxter gaté [20] in the following study.

3 Quantum teleportation using the Temperley—Lieb projecto

In this section, we construct a complete set of two-qubifgutive measurement operators with
the Temperley-Lieb projectdr (8) as a special case, and then exploit such a set to deshébe t
guantum teleportation protocol in the extended Tempetl®p-diagrammatical approach [20,/21].

3.1 The Temperley-Lieb projector as a two-qubit measuremenoperator

In guantum information and computation [1, 2], the well-kmocomplete set of two-qubit projec-
tive measurement operators is formed by the Bell state2[Z1given by

with the single-qubit gat&/’;; = X*Z7 and the EPR paiW) = %(|OO> +|11)), and the Bell pro-
jective measurement operator is denotediyi;j)) ()(i7)|. Note that the Bell statgg)(ij)) form
an orthonormal basis for the two-qubit Hilbert sp&tex 12, named the Bell basis. The orthonor-
mal condition for the Bell basis (or the orthonormal coratitfor the Bell projective measurement
operators) is given by

(Y(i2g2) | (i151)) = 0i1is0j1jas (12)
with the Kronecker delta functiof; = 1 for i = j andd;; = 0 for ¢ # j, which is equivalent to

1

5’61‘ (W;;jQ Wi1j1) = 61'11'2 6j1j27 (13)

with the index{ denoting the Hermitian conjugation.
In view of the construction of the Bell projective measureineperatorgi(ij)) (i (ij)|, we
reformulate the Temperley—Lieb projectbr(8) as a two-qubit projective operator,

E= |\I/]WUU><\I]M00|7 (14)

where the Bell-like statel ;) denotes the EPR pdi) with the local action of the single-qubit
gateMoo,
(W atgo) = (12 ® Moo)|¥). (15)

After calculation, the single-qubit gate/yq can be expressed as a product of elementary single-
qubit gates Moy = Ry HSHR,. The symbolsd, S and Ry stand for the Hadamard gate, the
phase gate and the phase shift gate|[1, 2], respectivelyhagdare given by

1 1 1 1 0 1 0
H0 ) () (Bl

Note that both the Paul gate [7) and the phase gafeare special cases of the phase shift gate
Ry, namelyZ = R, andS = R /s.

Furthermore, a complete set of two-qubit projective mezs@nt operator&;; including the
Temperley—Lieb projectoF (8) as a special cas&, = Ejg, can be constructed in the way

Eij = |\IIMij > <\IJI\/[ij

) Z’j = 0’17 (17)



with [Wy, ) = (1.2 ® M;;)| V), where the single-qubit gatéd;; have the form
Moo = RyHSHRy, Mo = RyZRy, Mig=XZ, My =RsHSTHR,. (18)

Note that the Bell-like stategl,,,;) form an orthonormal basis for the two-qubit Hilbert space
Ho ® Ho with the orthonormal condition given by

Eilh Eizjz = 5i1i25j1j2Ei1j1a (19)
equivalent to
1
St (Wm Mim) = 03051 s - (20)

Here we make remarks about both the Bell statgs))) and the Bell-like stategl ;). First,
both states can be exactly determined by the complete biasistary operator$V;; (or M;;) [28].
Second, they are maximally entangled states in quanturmiation science |1,12]. Third, all of
the associated two-qubit projective measurement oparaterable to generate the representation
of the Temperley—Lieb algebria [20], and thus all of them canddled the Temperley—Lieb algebra
projector.

3.2 Extended Temperley—Lieb configuration of quantum teleprtation

In the extended Temperley—Lieb diagrammatical apprda@ti2], the Bell staté¥) is pictured

as a cup configuration and its complex conjugati@his pictured as a cap configuration; a single-
gubit gate acting on the Bell states is pictured as a solidtpmi associated configurations. Thus
the Bell projective measurement operatbs$ij))(«(ij)| have a diagrammatical representation

shown as
}Wij

[v(i5)) (P (ig)] = H (21)

where the diagram is read from the bottom to the top corredipgrto the convention that the
algebraic expression is read from the right to the left. lrenmnore, the solid point representing a
single-qubit gaté/ on the cup or cap configuration is able to flow from the one braache other
branch with an additional transpose on such the fatghown in

uu = UTU 22)

which is related to the algebraic formula
(L2 © U)[¥) = (UT @ 12)|¥), (23)

with the symbolT" denoting the matrix transpose. Note that the property ttsngle-qubit gate
flows on the configuration plays a crucial role in the extendiechperley—Lieb diagrammatical
approach to quantum teleportation|[20] 21].

In quantum teleportation [3,/ 4] 5] 6], Alice has an unknowbitjlry) to be transmitted to
Bob and meanwhile shares the Bell stgle with Bob, namely, Alice and Bob prepare the state
|a) ® |¥). Such the initial state has the extended Temperley—Liefigumation,

o) @ @) = J7 u (24)



where the qubita) is depicted as a vertical line with the symbalat the bottom. Now Alice
performs the Bell projective measureméntij)) (1 (ij)| ® 1 on her qubits, which is illustrated
in the extended Temperley—Lieb configuration,

1
2 Wi (25)

with the dashed line denoting the time boundary betweenriitialistate and the Bell measure-
ments. On the left of the diagram, the identity operatgris drawn as the single vertical line;
after the single-qubit gatWiTj flows from Alice’s system to Bob’s system with the transpose,
(WJJ.)T = W;;, the unknown qubite)) has been transferred from Alice to Bob because of the
topological deformation. On the right of the diagram, thetdal/2 is a normalization factor con-
tributed by a pair of vanishing cup and cap configurationsréfore, this diagrani_(25) is related
to the algebraic formalism

(1 (2)) ((i7)| @ L) (Jer) @ [¥)) = %Iw(ij» ® Wijla), (26)

which is formulated, with the completeness relation of Belhjective measurement operators,

i o [ ((if)] = 14, as

o) @ @) = Zw ij)) ® Wijla), (27)

1,7=0

called the teleportation equation in [21,/ 27]. Finally, Blads to acquire the Bell measurement
results labeled ag, j) from Alice in order to apply the unitary correction operaﬁ;d/[/ig on his
qubit to obtain the unknown state)). Note that the teleportation protocol of Bob sending an
unknown qubif«) to Alice can be characterized in

0) @ |a) = Z S la) @ [v(if)), (28)

%,7=0

called the transpose teleportation equation in [27].

3.3 Quantum teleportation using the Temperley-Lieb projetor E;; (17)

In quantum teleportation [3] 4] 5| 6], we are allowed to replthe initial maximal entanglement
resource|¥) with the Bell-like state|¥,,,,) (@5) and replace the Bell projective measurement
operatotie(ij)) (¢ (ij)| with the Bell-like projective operatdt;; (I7). Similar to the teleportation
configuration[(Zb) using®) and |y (ij)) (1 (ij)|, the teleportation of an unknown qulhit) from
Alice to Bob using|¥ ) andE;; has the extended Temperley—Lieb configuration given by

}JVIM

1
2 Moo Z\/Ii*j (29)

\Y



corresponding to the algebraic formula

(101, (Wt | © o)) © [Wan)) = 5 W0, ) @ Moo M ) (30)

with the symbok denoting the complex conjugation, which can be reformdlatethe form of the
teleportation equation,

) @ [Waryy) = Z W ar,;) ® Moo M |ev). (31)
%,j=0

It is worth mentioning that the single-qubit gat&, initially acting on the Bell stat@l') has been
transferred to Bob from Alice and has become the singlet@até acting on Bob’s qubit.

Furthermore, the extended Temperley—Lieb configuratidaleportation of an unknown qubit
|a) from Bob to Alice can be drawn as

mE 1\4;], (32)

which is associated with the transpose teleportation émuat

|\I]Moo ®|a Z M(% |a ®|\I]M > (33)
%,j=0

Comparing the equatiobh (R7) and the equatiomn (28), we sedthanatrix transpose is performed
from W;; to Wg By contrast, looking at the equatidn {31) and the equafB®), (we have no
transpose because @F/oo M) # MOTOij.

Moreover, when = j = 0, the single-qubit gaté/o, M in the teleportation equation (31) is
identity, Moo Mg, = 12, and the Bell-like staté¥ ) can be prepared by applying the Bell-like
projective measurement operaff, (I7). Thus the teleportation of an unknown guhi} from
Alice to Bob can be viewed using the Bell-like projective m@@ment operatadty,

(Eoo ® 12)(|a) @ Eoo) = (|‘1’Moo> @ |a)) (L2 @ (W ary |), (34)

which can be derived from the equatidnl(30). Similarly, tleportation of an unknown qubit)
from Bob to Alice can be described in the way

(1Ly ® Eoo)(Eoo @ |av)) = %(IOO @ [Watg0)) ((W g | @ 2), (35)

whereMX M{, = 1, has been exploited. Hence the operatds © 15)(1ls ® Ego) and(lly @
Eoo)(Eoo ® 12) are capable of describing the teleportation protocol: tigegtor Eyo on the right
works as the state preparation channel and the projégtoon the left as the Bell measurement.
In general, quantum teleportation can be performed usmgperator$E;; @ 1,) (1, ® E,,) and
(12 ® Epy)(Ei; @ 1) whereE;; is not required the same #5,,, .



4 Quantum teleportation using the Yang—Baxter gate

In this section, we study the application of the Yang—Bagtete B (@) to quantum teleportation.
First of all, we show that this gate can be regarded as a gerstien of the Bell transform [27]
which is a unitary basis transformation from the productestéo the Bell states. In view of pre-
vious research [27] of quantum teleportation using the Batisform, we introduce the extended
Temperley—Lieb configurations of the Yang—Baxter gatand focus on the extended Temperley—
Lieb configuration of the teleportation operaf@ ® 1,)(1l: ® B).

4.1 The Yang—Baxter gateB (9) is the Bell transform

The Yang—Baxter gat®8 (9) acting on the product states gives rise to the Bell statisthe local
action of single-qubit gates modulo a global phase factor,

Blij) = e'*? (Ry @ Ry H)|:(j1)), (36)

wheree®@? is a phase factor depending on the indicesidj with i, 5 = 0, 1. Interestingly, the
inverse of the Yang—Baxter gaf#, denoted byBT, acting on the product basis, also generates the
Bell basis with the local action of single-qubit gates,

Blij) = €51 (Ry ® RgH)[(j + 1,7 + 1)), (37)

where the factou s+ is distinctive witha ;. Therefore, both thé& and BT gates are a generalization
of the Bell transform[[2[7] with the additional local actiohgingle-qubit gates. For simplicity, we
call the Yang—Baxter gatB as the Bell transform in this paﬁer

Obviously, the Yang—Baxter gat@ (or BT) is a maximally entangling two-qubit gatel [1, 2],
since the Bell states are maximally entangling two-quhitest and the local action of single-qubit
gates does not change the entanglement property of thetBtdbs Any two-qubit gat& [29] is
locally equivalent to the two-qubit gaté e X ®X +0Y'®Y+cZ2®2) modulo local action of single-qubit
gates with three non-local real parameterd, c¢), and the entangling power [30] of the two-qubit
gateU can be defined as

ep(U) = 1 — cos® 2a cos® 2b cos? 2¢ — sin? 2a sin? 2bsin® 2¢ (39)

ranged from O to 1, where,(U) = 1 means that thé&/ gate is a maximally entangled two-qubit
gate. After some algebra, the non-local paramegters, c) for the Yang—Baxter gat® take the
value of(%, 7,0), soe,(B) = 1.

In addition, the Yang—Baxter gatB can be decomposed as a tensor product of elementary
guantum gates expressed as

B =¢'i"(Ry® Ry)CZ(HZ ® HZ)CZ(R} ® R},), (40)
where theCZ gate [1/ 2] has the conventional form

CZ=10)(0] ® 1y + |1)(1]| ® Z. (41)

3 The Bell transformBgy in this paper is defined as

1

Bar= Y €™ (S ® Qui)lw(k, D)(K I, (38)

k’,1'=0

wherek = k(k’,1’) andl = I(k’,1’) are bijective functions ok’ and!’, respectively,e’®« is the phase factor; ansl;
andQg; are single-qubit gates. Such the definition of the Bell tiams differs from the proposed definition of the Bell
transform in previous research [27] where single-qubieg8y,; andQy; are not involved.



The quantum circuit corresponding to such a decompostidiustrated in
)

4\/% L e{HZ]-9 Ry
e A mar s

B (42)

where the over-crossing feature in the box means thaBtbate is a braiding operator[9], and the
overall phase1™ is neglected, and the configuration of two solid points catedwith a vertical
line represents th€Z gate [41). Note that the decompositibn](40) of (hegate using at least two
CZ gates is optimal according to the criterion[31] of calcugtthe least number of th€Z gate
to perform a given two-qubit gate.

4.2 Extended Temperley—Lieb configurations of the Yang—Baer gate B (9)

In accordance with previous researichl[21, 27], a given YBagter gate is allowed to have various
of equivalent extended Temperley—Lieb configurations.eHee investigate at least five types of
extended Temperley—Lieb configurations of the Yang—Bagste B (@), three of which will be
presented in this subsection and the remaining two of whitltbespresented in Appendix|B.

The formula[(36) verifies that the Yang—Baxter gate{9) is the Bell transform(38) and the
associated Bell transform is expressed as

1
B= Y €27 (Ry ® ReH)[v(lk))(kl|. (43)
k,l1=0

With the definition of the Bell basi§ (11) and the fldw23) ofiagée-qubit gate on the Bell state
|¥), the Yang—Baxter gatB can be further reformulated as

1
B= Y (ly® Vi)|)(kl| (44)
k,1=0

with Vi, = e'2 R, H X' Z*R4. So the first extended Temperley—Lieb configuration of thegra

Baxter gateB is pictured as
| |
R
- k,l=0 (45)
4 e

where the vertical line with the symbdl represents the statg| and such the line with the action
of the Pauli gateX represents the stafé|. Note that this configuration is read from the bottom to
the top, different from the convention of reading the quamtircuit (42) from the left to the right.

Furthermore, the formulé& (B7) verifies that the inverse ef Yang—Baxter gaté® is also the
Bell transform[(3B) and surprisingly after some algebrattheg—Baxter gaté3 can be related to
the inverse of Yang—Baxter gafgwith the local action of the single-qubit gate,

1
B=)_ |ij)(¥|(12® Uy) (46)
i,7=0



with U;; = e~ st RLZZ'“XJ'“HRL. Thus the second extended Temperley—Lieb configuration
of the Yang—Baxter gat® is shown in

I><I =Yi=0 i"rf‘ (47)

which appears quite different from the configuration (4&ha@ugh they describe the same Yang-
Baxter gateB (9).

Moreover, the third extended Temperley—Lieb configuratibthe Yang—Baxter gat® is due
to the application of the spectral theorérm [1], that is, taag~Baxter gat®& has the decomposition

B= Y \j;Ey, (48)

where the Temperley—Lieb projectofs; (I7) are eigenstates of the Yang—Baxter g&tevith
the respective eigenvalugsy = e®™/4, \g1 = Ao = €*™/* and)\;; = €'"/%. The associated
extended Temperley—Lieb configuration of the Yang—Baxége §§ is shown as

X = Z;,j:() Aij HM? (49)

with single-qubit gated/;; defined in[(IB).

Although three configurationg (5], (47) ahdl(49) of the YeBaxter gateB3 are equivalent,
when and how they will be exploited completely depend on &ifipeircumstance; for example,
the first and second configurations are immediately appfietthé following subsection and the
third configuration will be used in Sectigh 6.

4.3 Quantum teleportation using the Yang—Baxter gate3 (9)

The quantum teleportationl[3] 4,5, 6] can be characterizetthé teleportation operatadr [21,127],
which is the tensor productin terms of the identity operdta Bell transform and its inverse. Here
the Yang—Baxter gat8 is the Bell transform(38), see (36) ahd|44), and espediaéiinverse of
the Yang—Baxter gat® is related to the Yang—Baxter gate by the local action of single-qubit
gates, sed (37) and (46). Hence we define the teleportateEnaimp as the tensor product in terms
of the identity operator and the Yang—Baxter g&tenamely(B ® 13)(1, ® B) for simplicity
(instead of( B~! ® 12)(1l2 ® B) orginally introduced in[[21, 27]).

With two types of the extended Temperley—Lieb configurati@B) and[(4l7) of the Yang—
Baxter gateB, the extended Temperley—Lieb configuration of the telegimm operato(B ®
15)(1; ® B) is illustrated in

ixf' ixf Wi ikl

= (50)

At




where the single-qubit gaté;; (46) flows from Alice’s system to Bob’s system with the traose
and the single-qubit gaté’; ; ;. ; has the form

Wi,j,k,l _ VklUij; _ (_1)l‘(k+j+1)ei(aB—OzBT)R¢Xj+k+lzi+l+1RL- (51)

In view of this configuration, it is obvious that an unknownbify«) can be transmitted from
Alice to Bob by topological deformation with the additiorattion of the single-qubit gaté’; ; i ;.
Consider the action of the teleportation operdf®® 1, ) (1, ® B) on the initial statéa) | k). With
the help of the configuratiof (50), the corresponding tetggion equation is expressed as

1
(B® 1)(1> @ B)a)lkt) = 5 3 lif) @ Wi kila), (52)
i,5=0

where the factot /2 is due to the vanishing of a pair of cup and cap configurati@osomplete
the teleportation protocol, Alice performs the product®aseasuremernt;)(i;j| on her qubits and
then informs the measurement resuits/) to Bob. Afterwards, Bob applies the unitary correction
gateWiTj_k_l on his qubit to obtain the transmitted stéte.

Two remarks are made. First, the fact that the teleportatimrator( B ® 1,)(1l; ® B) suc-
cessfully describes quantum teleportation means thatefieition of the Bell transforni{38) with
additional local action of single-qubit gates is an appietprgeneralization of the definition of the
Bell transform in [27]. Second, the notatiéf; ; »; (52) is not the notatiodV;; in (IT). The
single-qubit gatéV; ; . ; in the teleportation equatioh (52) is in general not the Rgatk because
single-qubit gate¥}; (44) andU,; (46) are usually not the Pauli gates, whereas the corresppnd
single-qubit gate in the teleportation equation derivefiy [27] is always the Pauli gate. In this
sense, quantum teleportation using the Yang—Baxter §af@) is beyond the standard quantum
teleportation in[[3, 4,15,16] and [21, P7].

5 Teleportation-based quantum computation using the Yang—
Baxter gate

In fault-tolerant quantum computationl [1, 2], Clifford gat[1,/32] such as the Hadamard gate
and the phase gate (16) and B2 gate [[41), can be fault-tolerantly performed in a systemati
approach, but how a non-Clifford gate such as a specific pélaftegate R, (18) with ¢ = 7/8
(called ther /8 gate or thel” gate, I’ = R, ), can be fault-tolerantly performed is not that explicit.
Teleportation-based quantum computation [24, 25] is a tff@ult-tolerant quantum computation
in which the problem of how to fault-tolerantly perform n@tifford gates becomes the problem
of how to fault-tolerantly perform Clifford gates with thedaof quantum teleportation.

In this section, first of all, we verify the Yang—Baxter gdtg (53) as a Clifford gate, which is
the Yang—Baxter gat® (@) with the specific phase parameter= 0, and derive the teleportation
equations using such the gdtg. Secondly, we study the fault-tolerant construction ofjErqubit
gates and two-qubit gates in teleportation-based quantumnpatation using the Yang—Baxter gate

By (53).

5.1 The Yang—Baxter gateB, (53) is a Clifford gate

A Clifford gate [1,32] is expressed as a tensor product ofthdamard gaté/ and the phase gate
S (18) and theCZ gate [41); equivalently, tensor products of the Pauli masriwith phase factors

+1, +4 are preserved under conjugation of Clifford gates. Hene®#uli gates with overall phases
+1, 4+ are the simplest examples for Clifford gates. Note thatf@iif gates play crucial roles in

fault-tolerant quantum computatian [1,/132].
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The Yang-Baxter gat® (9) is in general not a Clifford gate due to the phase shife gas
(@86) in its decomposition formula{#0). When the phase faistaero, namely = 0, however, the
phase shift gaté?, becomes the identity matrix and the associated Yang—Bgaterdenoted as
By given by

By=CZ(HZ @ HZ)CZ (53)

with Z = S? modulo the overall phasei%” is obviously a Clifford gate. The transformation
properties of tensor products of the Pauli matrices undejugation by the Yang—Baxter gaf#,
shown below

Bo(X ® HQ)B
B()(Z ® ]12)B

O —

= (12 ®X), Bo(la® X)B} = —(X @ 1),

_(X02).  By(lawZ)B) = (25 X). o4

O —+,

also verify the Yang—Baxter gafe, as a Clifford gate.

The Yang—Baxter gat8 (@) and its inversé3' are the Bell transforni(38), and thus the Yang—
Baxter gateBy (53) and its inverséSg are too. TheB, gate acting on the product basis gives rise
to the Bell basis with the local action of the Hadamard gate,

Bolig) = (1) (1o ® H)[y(ji)), (55)
which is the special case ¢f (36) with= 0, and the same is true for the gﬂé,
Bilij) = (1) (Ly @ H)[(j + 1,i + 1)), (56)

which is the special example ¢f(37) with= 0.
Consider the special case of the teleportation equdiignatz2= 0. The associated teleporta-
tion operato( By ® 12)(12 ® By) gives rise to the teleportation equation

1

(Bo @ 115) (115 @ Bo)|a)|kl) = % S” 1) @ Kigaala) (57)
i,j=0

where single-qubit gatek’; j ., = (—1)7"1+i+k xitht+l 7i+l+1 gre the Pauli gates with phase
factors. Furthermore, the teleportation operator can fi@etein the other way, namelfil, ®
By)(By ® 1) (refer to [21]), and it is related to the teleportation edprat

1
1 ..
(12 ® Bo)(Bo @ 12)|kl)|ar) = 3 Z Lijkle) ®ij), (58)
i,j=0
whereL; ., = (—1)tF+iitlxiti+l7zi+k+1 - Both types of the teleportation equations using

the Yang—Baxter gat8, are to be exploited in the fault-tolerant construction adugium gates in
teleportation-based quantum computation in the follovanlgsection.

5.2 Fault-tolerant construction of a universal quantum gae set

The detailed strategy of fault-tolerantly constructinggie-qubit gates and two-qubit gates in
teleportation-based quantum computation has been pegsen{21], and hence we will make a
brief sketch on the relevant results in this paper.

In quantum circuit model]1], single-qubit gates with anaergling two-qubit gate form a uni-
versal quantum gate set, namely all quantum gates can beageth@s a tensor product of gates
from this gate set. All single-qubit gates can be generatau the Hadamard gaté and theT
gate " = R, s) [33]. The Yang—Baxter gatB, (53) is the Bell transform and so it is a maximal
entangling two-qubit gate. Therefore, the quantum gatéskiding the single-qubit gated, T’
and the Yang—Baxter gafe, is a universal quantum gate set.
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To fault-tolerantly perform a single-qubit gaieon an unknown qubit stater), namelyU|«),
we prepare the product stdte | k1), then firstly apply( 1. ® By) and secondly applyilo @ 1, ®U),
so that the prepared state has the form,

(1@ 12 @ U) (12 ® Bo)|a)|kl), (59)

where the single-qubit gaté is acting on the entangled staBg |k!). Thirdly, we apply(Bo ® 1)
on such the prepared state in order to derive the telepamtatjuation given by

1
1
(Bo @ 112)(12 @ 1> © U) (112 © Bo)la) [kl) = 5 > i) @ RijraUley), (60)

4,3=0

whereR; ; ; = UK, ;x,U'. Finally, we apply the local unitary correction operatts 1, ®
R;j_’k’l) to obtain the expected resilt«). When the single-qubit ga is a Clifford gate such
as the Hadamard gafé, the related single-qubit gaté& H ); ; 1, have the form

R(H)i gy = HE; jp H = (—1)7 07tk Zithtl it (61)

which are Pauli gates with overall phases. Wibeis a non-Clifford gate such as tlfégate, the
single-qubit gates(T'); ; »,; have the form

v dtktl

X 1Y> ZiJrlJrl7 (62)
V2

with \/—1 denoting the imaginary unit, which are the Clifford gatesefiefore, the task of fault-
tolerantly performing the non-Clifford gaté in teleportation-based quantum computation has
changed as the task of fault-tolerantly preparing theahstfate(ll, ® 1, ® T) (12 ® By)|a)|kl)
and fault-tolerantly performing the Clifford gat&(T"); ; i

To fault-tolerantly perform the Yang—Baxter galiy on an unknown two-qubit staties),
namelyBy|a/3), we fault-tolerantly prepare the initial state

R(T)i kg =TK; jp T = (=1)71H07HE <

(1, ® By ® 12)(Bo ® Bo)(|k1l1) ® |kalz2)), (63)

and then perform a three-fold tensor product of the Yangt@8egate B, on such the prepared
state, so that we have the teleportation equation

(By ® By ® Bo)(lla ® By ® Bg @ 12)(|a) @ [k111)) @ ([k2l2) @ |8))

Y Y (LeQe Pe L)) © Blad) ®liz), (64)

11,J1=012,j2=0

where the tensor product of the single-qubit ga@pesnd P is defined as
Q ® P = Bo(Ki, jy k.t ® Liy o kata) By, (65)

with the single-qubit gate&;, j, ,.;, andL;, j, k..., defined in the teleportation equationsl(57)
and [58), respectively. After some algebra, the singleitqates)) and P are found to be the Pauli
gates with phase factors,

Q = (_1)(k1+1)'(i1+ll+1)+1Xi1+i2+l1+l2ijJrszrl; (66)
P = (_1)i2‘(k2+j2+1)+1Zi1+l1+1Xj1+k1+j2+k2, (67)

where the relation§ (54) have been exploited.
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6 Interpretation of the tangle relations (4) of the BMW algelra
via quantum teleportation

In the previous sections, we have reformulated the standesdription of quantum teleporta-
tion using the Temperley—Lieb projector and described lopthntum teleportation protocol and
teleportation-based quantum computation using the YaagteB gate. On the other hand, the
mixed relations of the BMW algebra involving both the TemegrLieb projector and the Yang—
Baxter gate, such as the tangle relatidns (4), have not leesidered so far. In this section, there-
fore, we clearly show that the tangle relations of the BMWeal@ have a natural interpretation of
guantum teleportation.

First of all, from the tangle relation§l(4), we derive the swaint equations of single-qubit
gates)M;; (18) which define both the Temperley-Lieb projector; (17) and the Yang—Baxter
gateB (48). For convenience, we make a theorem to summarize oganels results and present
a detailed proof for it. Secondly, throughout the proof, welize that the tangle relations of the
BMW algebra are associated with the teleportation equattbaracterizing quantum teleportation,
which is summarized in the corollary to the theorem.

Theorem 1. In terms of the Temperley—Lieb mat#ix(8) and the Yang—Baxter gafe (@), the four
matrix expressions of the tangle relatiohs (4) of the BM\Whig given by

(Be1:)(1:®B)(E® 1) = 2(1:® E)(F® 1s); (68)
(I, ®B)(BR19)(1l: @ FE) = 2(E® 1)(1s @ E); (69)
(E@ 1) (1@ B)(BR1s) = 2(E®1)(1:® E); (70)
(I, @ E)Y(B@ 1)1, B) = 2(1,® E)(E @ 1), (71)

are respectively reduced to the constraint equations aflsiqubit gates\/;; (I8) given by

1
> Nij A M M Mg M,

k,l=0
1
Z)\ij)\klMlz;M;jMOOMI:l = 2MgM; (73)
k,l=0
1
D NijAa M Mg MEM], = 2M5 M{; (74)
k,1=0
1
Y N A Mg MMMy = 2My; Mg, (75)

k,l1=0

where the parameters;; are the eigenvalues of the Yang—Baxter gBt€48) and single-qubit
gatesM;,; (18) are bases of unitary matrices defining the Temperleb-piojectorE;; (17).

Proof. As an example, let us derive the first constraint equaltioh¢7&ngle-qubit gated/;,; from
the first tangle relatiorf (68). We apply both sides of the &qnd68) on|¥ ;,,,) ® |a) with the
Bell-like state| ¥ ,,,) (@8) and an unknown qubiit), so that we have

(B @ 12)(112 @ B) (|Wary) ® ) = 2(12 @ E)(|¥as) @ |)), (76)

whereE = |, ) (¥, | has been exploited.
With the teleportation equatioh(35), the right-hand sitithe equation[(76) is equal fa) ®
|¥ ar,, ), Which can be further reformulated with the teleportatignation [31), so that we have

1
2(]12®E)(|\11M00>®|a Z |\IIMU ® Moo ;<J|a> (77)
1] =0
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With the spectral decomposition of the Yang—Baxter ga@8), the left-hand side of the equation
(Z9) can be calculated as follows,

(B ® 112)(112 ® B)(|¥no0) @ |a))

Z Z)\U)\kl< i )®112) (ﬂ2®(Mkl7 )) (19 :00) ® )

1,7=0 k,l=0

1 1
1 *
= 3 SN Nkl Was,,) ® My MMM o), (78)
i,j=0 k,1=0

where the symbal}M;;, Z.Tj) denotes the Bell-like projective measurement operator,
(MZJ’M |\ij””><\1]sz| (79)
Comparing both the equatidn {77) and the equafich (78), we ha

1 1 1
1 * 1 *
DY Z it ar,,) © MM MioMjjla) = 5 > [Wa,) © MooMjle),  (80)
1,5=0 k,1=0 i,5=0
which gives rise to the first constraint equatibnl(72). Noiat the relation[{42) is the necessary
and sufficient condition for the relation (80) due to the $atiat the Bell-like statejgl s/, ;) form
an orthonormal basis of the two-qubit Hilbert space and tilenawn statéa) is arbitrary.
Similarly, the remaining tangle relatiois {69)-(71) carrgglaced by

(I ® B)(B® 12)(Jo) @ [Wagy)) = 2(E® L2)(|r) @ [Wagy)); (81)
(Tatpe | @ (a)(M2 @ B)(B®@ 12) = 2((Varg| ® (af)(12 @ E); (82)
((af @ (Waro N(B@L2)(2 ® B) = 2({a @ (Vs |)(E @ 1), (83)
which can be respectively used to derive the constraintioels [73){75). O

Obviously, the above algebraic proof has a topological rdiagnatical interpretation in the
extended Temperley-Lieb diagrammatical approach. Natethe operato(B ® 12)(12 ® B)
in the tangle relationd (68)-(V1) does not play as the tetafion operator in the teleportation
equation[(5R) because it is not acting on the product staencelit is not appropriate to choose
the extended Temperley-Lieb configurations of the Yangt@agateB such as[(45) and(#7) in
the following discussion. Instead, we take account of th&igaration [49) of the Yang—Baxter
gate B to study the configuration of the tangle relations of the BMigyelra. The topological
diagrammatical representation for the algebraic calmmran (78) is illustrated in

|

| Ml oMy,

1
= Zi,j,k,l:o Aij Akl

1 Z i,5,k,1=0 AijAki §7MMM* miynmfl, (84)

DZ\/IkL

Moo Moo

\Y L Vv

where the facto% is due to the vanishing of two pairs of the cap and cup conftgusa in the
topological straightening deformation and before suchdéfrmation all relevant single-qubit
gates have to be moved with the matrix transpose fule (23pwfifh a single-qubit gate.

Looking at both the algebraic and topological proofs for dieen[1, we see that each of the
tangle relations of the BMW algebra is associated with theesponding teleportation equation.
This observation can be summarized in Corolldry 1 to Thedilem

15



N

}IWOO

e
Mg

¢ Mg

| |

4)
1 1 ; « (
5 E i,j=0 M;; Moo M}, —_— Moo

Figure 1: Relationship between the tangle relation (68)tardeleportation equation (31) @r{85)
in the topological diagrammatical representation. Letxan the symbols (1), (2), (3) and (4),
respectively. (1) The top two diagrams represent the targéeion [76). (2) With the extended
Temperley—Lieb configuratiob (#9) of the Yang—Baxter gatand the constraint relation ([72), the
left-hand side of the tangle relatidn {68) can be simplifiei ithe right-hand side of the telepor-
tation equation[(85), refer to both (78) aidl(84). (3) Thentigand side of the tangle relation
(€8) can be deformed into the left-hand side of the telegiortaaquation[(8b) with the topological
straightening operation. (4) The bottom two diagrams regméethe teleportation equatidn{85).

Corollary 1. The four matrix expressions of the tangle relatidns (€&)y@f the BMW algebra are
respectively associated with the teleportation equations

1
1 *
@) @ [Wame) = 3 D 1War,) © Moo Mjjla); (85)
‘,j—O
[Waso) ® o) = Z Mgy M) @ |War,,); (86)
z] 0
<O‘|®<\I}Moo| = 5 Z \IIM” MTM(J{()v (87)
z] 0
1 1
(ato| @ (0] = 5 > {al My Mgy @ (88)
2,7=0

Proof. For example, we draw Figufé 1 to understand the relatiortstiyyeen the tangle relation
(€8) and the teleportation equati@nl31)[orl(85). In Figuridé top two diagrams represent the tan-
gle relation[[68) and the bottom two diagrams are deriveahfitoe top two diagrams, respectively,
with the topological straightening deformation. The botttwo diagrams are just both sides of
the teleportation equation (85). Note that the constrailation [72) has been already assumed in
our study. Similarly, the other three tangle relatidng {Gl) respectively lead to the teleportation

equations[(86)E(88). O

Therefore, in the extended Temperley-Lieb diagrammatipploach, the tangle relatiois (4)
of the BMW algebra consisting of both the Temperley—Liebjgetor and the Yang—Baxter gate
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admit an interesting interpretation of quantum telepa@tat Note that such the relationship is
independent of the specific representation of the Tempelrlep projector and the Yang—Baxter
gate, such as{8) anfl(9) presented in the referénce [22]ielm of this fact, furthermore, we

will investigate the subject of how to derive a general repregation of the BMW algebra in the
extended Temperley-Lieb diagrammatical approach in tkessetion.

7 General construction of a representation of the tangle rel-
tions (4) of the BMW algebra

It is well-known that how to construct an interesting bragpmesentatior{2) (or an interesting
solution of the Yang—Baxter equatidn [10]) is always a megfil and challenge problem in the
research frontier, refer to[9, 10,111,112 13] 21, 34], arelghme is true for the construction of
an interesting representation of the BMW algebra [16], méde[9, [17,[18] 18] 22, 23]. In the
previous research [21], a method of constructing the Yamagtdd gate in the extended Temperley—
Lieb diagrammatical approach has been proposed, and hetits section we want to exploit the
extended Temperley—Lieb diagrammatical approach to oactdhteresting representations of the
BMW algebra different from the representation using the periey—Lieb projecto’ (8) and the
Yang—-Baxter gaté3 (). In view of the research result in the last section thattémgle relations
(@) of the BMW algebra have a natural interpretation of quamteleportation in the extended
Temperley—Lieb diagrammatical approach, first of all, weuon the general construction of the
representation of the tangle relationk (4) of the BMW algebr

Looking at Theoreril]1, we see that the tangle relations of t&\Balgebra give rise to the
constraint relations of single-qubit gates defining bothtamperley—Lieb projector and the Yang—
Baxter gate. Hence we assume that the Temperley—Lieb poojecand the Yang—Baxter gaté
have the form in terms of the Bell-like basiy, ;) given by

[Pu,;) = (12 @ Usj)| V) (89)

with single-qubit gate#/;; satisfying the orthonormal condition
Lo (o
§tr (Ui2j2 Uiljl) - 5i1i25j1j27 (90)

and then require them to satisfy the tangle relations of th®\Balgebra in order to derive the
constraint equations of single-qubit gaiés.

Theorem 2. The Temperley—Lieb projectd® assumes the for®® = |¥y, . ) (¥ | with spec-

mn mn

ified m,n and the Yang—Baxter gaté assumes the form of the spectral decomposition given by

1
U= Z /’LijllllUij><\I]Uij|7 (91)

i,j=0
with eigenvalueg;;. When single-qubit gatds;;, i, j = 0, 1 and the specified single-qubit gate
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U,nn, satisfy the constraint relations:

1
1
3 > pisp Ul U U UL UL U = USUL (92)
k,1=0
1 1
3 S iU U UL Unn U UL, = Uf Ui (93)
k,1=0
1 1
5 O iU UnUsUS U Unn = U3, UL (94)
k,1=0
1 1
5 2 ki Un UnUh, Ui Ui Us,, - = Ub, Uiy, (95)
k,1=0

the Temperley—Lieb projectd¥ and the Yang—Baxter gaté satisfy the tangle relation§l(4) of the
BMW algebra.

Proof. The proof is a direct generalization of the proof for TheofBmFor example, we derive
the constraint relatioh (92) from the tangle relation usimg Temperley—Lieb projectdr and the
Yang—Baxter gaté&’ given by

U L) (1o @U)(E® 1) =2(1, ® E)(E ® 1.). (96)
Both sides of the equatioh (96) acting [di,,) ® |«) give rise to

21: 21: i ki ((Uij7UiTj)7 112) (112, (Ukz,U;L)) (1%0,,.) ®|a))

i,j=0 k,1=0
= 21, (Unn, U) (190,.,) @), (97)

with the Bell-like projector(U;;, Ujj) defined in [7B), which can be simplified with the help of
extended Temperley—Lieb configurations suct_ab (32)[adq (84

1 1

1

1 SN )@ pig i UnUS UL, Ul o) = UL UL o) @ [90,,). (98)
i,5=0 k,l1=0

Furthermore, with the teleportation equation of descgive transport of the unknown qubi) =

UnmnUlinlo),

1
1 *
18) @ [¥u,,.,.) =5 > Yu,) @ Unalj18), (99)
i,j=0

which can be derived with the extended Temperley-Lieb carditpn [29), the equation (P8) leads
to the constraint relation of single-qubit gatég,

1
1
5 2 HigtmUaU5Um UL UnnUsn = Unn U, (100)
k,l=0
which is equivalent td{32). O

Corollary 2. The eigenvalueg,;; of the Yang—Baxter gaté (91) satisfy the constraint relation
1 1
k,1=0

when the Temperley—Lieb projectrand the Yang—Baxter gaté satisfy the tangle relation§l(4)
of the BMW algebra.
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Proof. The trace of the constraint relatidn {92) has the form

1
1 * *
5 D migpate (U;nUklUijU,ﬁnU;lUmn) — tr (U5UL,) (102)
k,1=0
which leads to .
1
3 Z Hij ok10imOin = OimOjn, (103)
k,1=0

where the orthonormal condition (90) for the Bell-like sasiates ¥, ;) has been applied. Both
sides of the constraint relatidn (103) have the summati@n the indices, j, which completes the
proof for the corollary. O

As an example, we solve the constraint relatign$ (82)-@8)otain interesting representations
of the BMW algebra. The unitary baség; are set adV;; = X'Z/ defining the Bell states
lv(i4)) @), and the unitary matri&,,,,, defining the Temperley—Lieb projectatis also chosen as

Umn = X™Z™. The detailed calculation is shown in Appendix C, and theltesre summarized
as follows.

e The Temperley-Lieb projectdt has the form

|
E=-

: (104)

oA O O
o O OO
oo oo
_ o oM

wheree = 1 for E = [1(00))()(00)| ande = —1 for E = [1(01))()(01)|, and the
associated Yang—Baxter gdfehas the form

cos ¢ 0 0 i sin ¢
_ 0 —iesing +cos¢ 0
U= 0 +cos¢p —iesing 0 ’ (105)
isin ¢ 0 0 cos ¢
or
0 0 0 et
0 e ™ 0 0
U= 0 0 e 0 ’ (106)
e 0 0 0
with ¢ € [0, 27).
e The Temperley—Lieb projectdt has the form
0 00O
| 0 1 € O
E=510¢c1 0| (107)
0 00O

wheree = 1 for E = [1(10))((10)| ande = —1 for E = [1(11))(»(11)], and the
corresponding Yang—Baxter gdtehas the form

isin ¢ 0 0 cos ¢
_ 0 +cosp —iesing 0
U= 0 —iesing +cos¢ 0 ’ (108)
cos ¢ 0 0 isin¢
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or

e 0 0 0
0 0 ee” @ 0

U= 0 e 0 0 |’ (109)
0 0 0 e

with ¢ € [0, 27).

In the viewpoint of the extended Temperley—Lieb diagranicahpproach[21], Theoref 2
can be easily generalized. We consider the general casegaonstruction of the representation
of the tangle relation§14) in which a two-qubit projectiveasurement operatéi and a two-qubit
gateG are involved, namely that the Temperley—Lieb projedand the Yang—Baxter gaé are
not supposed.

Theorem 3. A two-qubit projector measurement operatdr= |¥;; (¥ | and a two-qubit

guantum gates given by

Umn

1
Z éij,klllllqu\IjUkz' (110)
i,7,k,l=0

with 16 entries of complex numbe(Ele form the representation of the tangle relatiobk (4) when
the constraint relations

Gi1j17k111Gi2j27k2lejnnUi2j2Ul:1l1ngnUIIngUmn = U} mn; (111)

1171

-
MH

k1,01=012,j2,k2

Gi1j17k1l1éi2j27k2l2U UT Ukll Um"UkzleT = UT mn; (112)

mn =~ i2j2 1171

N)I»—A

MmM

012,72

wm

T *
Gi1j17k1l1Gl2J27k2l2U UZszU* Uk1l1U112l2Umn: Umn 11517 (113)

N =

k1,l1=01i2,j2,k2,l2=0
1 1

Gi1j17k1l1éi2j27k2l2U UT U Uk1ll Ul;kzlz Ugr;n = U’rthUiljl’ (114)

mn 12]2

N =

k1,11=0i2,j2,k2,l2=0
are satisfied.

The proof for Theorerhl3 is a direct generalization of the pfoo Theorem 2, and so it is
omitted here. About how to solve these constraint relatiorabtain an interesting representation
of the tangle relationg14) is a challenge problem in futwsearch, because the result may be
not a representation of the BMW algebra but indeed has arestiag interpretation of quantum
teleportation. In addition, the constraint relatidng (§2) and the constraint relatioris (1 1[)-(1114)
can be reformulated with the new conventions and notatierfisr to AppendixD.

8 Concluding remarks

In this paper, we describe quantum teleportation prot@®;a1[5/ 6] and teleportation-based quan-
tum computatiori[24, 25] using the generators of the BMW!algéncluding both the Yang—Baxter
gate and the Temperley—Lieb projector. We point out thatahgle relations defining the BMW
algebra have a close connection with the teleportationga®icand thus the extended Temperley—
Lieb diagrammatical approach [20,121] properly charazerithe topological feature of quantum
teleportation. We propose a meaningful approach of coctitigia general representation of the
tangle relations of the BMW algebra and obtain interesteépgyesentations of the BMW algebra.
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Notes Added After this paper is done, we are occasionally informed that Yang—Baxter
gates[(105) and (108) have been already presented in themif@d]. As a matter of fact, these
gates are derived in two essentially different approachi¢ss.derive such the Yang—Baxter gates
in the extended Temperley-Lieb diagrammatical approa6hi22], whereas the authors of [34]
obtain them via the algebraic approach of the cyclic groupe stidy and look for interesting
representations of the BMW algebra, which are not involvef34].
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A The Brauer algebra and quantum teleportation

It is well-known that the BMW algebra [16] is the algebraidatenation of the Brauer algebra
[26]. Quantum teleportation using the Brauer algebra has legplored in[[20], which originally
motivated the authors to study quantum teleportation ugiad8MW algebra and write down the
present paper. Here we make a simple sketch on the Braudiralged its relation to quantum
teleportation.

The Brauer algebr®,, (d) [26] with the loop parametet is generated by the Temperley—Lieb
idempotentg; and the permutationg with i = 1,...,n — 1. The Temperley—Lieb idempotents
e; satisfy the algebraic relations,

e? =e; €?€ii'1€i = d2e;, (115)
eie; =eje; |i—j|l >2,
and the permutation generatarssatisfy
v} =1, VLIV = Vit 0V (116)
Both generators satisfy the first type of the mixed relations
€iv; = vie; = €4, (117)
and the second type of the mixed relations,
Vi1Vi€ix1 = €011V = deieit1, (118)

which are called the tangle relations of the Brauer algebthis paper.
A tensor product representation of the Brauer algebra carobstructed in terms of the Bell
state projectof¥)(¥| (I1) and the permutation gatedefined byP|ij) = |ji) as follows

e; = 180D @ |00 @1®ri-b, (119)
v; = 180D g pgper-i-l), (120)

with the loop parametet = 2. Using the Bell state projectd¥) (¥ |, we perform the teleportation
process in the way

(1) (Y] @ ) (jo) @ [¥)) = %I‘I’> @ |a), (121)

which is a special case df (26) for= j = 0. In terms of the permutation gafe, we define the
teleportation operator 43> ® P)(P ® 1) to swap the quantum state in the way

(Iy @ P)(P @ 12)(|e) @ [if)) = [i) @ |ev). (122)
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With the configuration[{21) of the Bell state projectdr)(¥| and the extended Temperley-Lieb
configuration of the permutation gatg

1 i UW”
P:Zi,jzo(*l) /

H , (123)
we reformulate the tangle relatios (118) of the Brauertaigas
(P@1z)(1 ® P) (|¥) ®[a)) = 2(12 @ [W){¥]) (|¥) @ |a)) (124)

which can be reduced into the teleportation equafioh (27§ tto the proof for Corollaryl]1.

When the permutation gaft® is replaced with the Yang—Baxter gate(9), the above repre-
sentation of the Brauer algebra is substituted by the reptaton of the BMW algebra, so the
study of quantum teleportation using the Brauer algebr@@j paturally points towards the study
of quantum teleportation using the BMW algebra in this paper

B More on the extended Temperley—Lieb configurations of the
Yang—Baxter gate B (9)

It is obvious that the extended Temperley—Lieb configurati®0,[21] play the essential roles
throughout this paper. In accordance with the referenck 2Yang—Baxter gate allows various
but equivalent extended Temperley—Lieb configurationst és@mple, three distinct configura-
tions of the Yang—Baxter gatB (9) are presented in Subsectlon]4.2. Here another two extend
Temperley—Lieb configurations of the Yang—Baxter gatare introduced and they may be useful
elsewhere.

The Yang—Baxter gat® (@) can be related to the Temperley—Lieb projediof) in the way

B=1U+2ic'i"E, (125)
whereU is a unitary matrix with the decomposition
U =31y + V2 ([£(10)) (¥ (10)] + [, WUy, |) (126)

with [¢(10)) = (1 ® X)|¥) and|Vg,,) = (12 ® Ray)|V), Reg denoting the phase shift gate
(18), and the associated extended Temperley—Lieb configaia illustrated in

% _eidn | | 43 ux+ﬁ u+2 B (127)
/ | -

T T
Rag Mg

where the two vertical lines represent for the identity malr;.

Note that the single-qubit gately is defined as\loo = R,HSHR, (@8). And bring such
decomposition of thé//y, gate into the relatior (125). After some algebra, the Yaraxi@® gate
B takes another form

B = ei%ﬂ' (]14 - |¢(10)><¢(10)| - |‘I]R2¢><\I]R2¢| - e_i¢|\PR2¢><w(10)| + el¢|w(10)><\PR2(i|2)87)
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and its extended Temperley—Lieb configuration is shownvelo

S| | - - Ll L

A A o

which together with[{127) point out the fact that no transpartopological deformations exist
between such two configurations, although they are algedihaiequivalent.

(129)

C How to solve the constraint relation [92)
For example, we make a sketch on how to derive the repregantdtthe BMW algebra, such as

(104) and[(105) of(106) from the constraint relation (92t t8e unitary basds;; asU;; = X*Z7
and the unitary base matriX,,,, asU,,,, = 1». Then the constraint relatiof (92) has the form

1
i X2 X 77X = X7, 130
Hij o
=0

N~

which can be reformulated as

= Z pijp (1) ()X 20 = X170, (131)
kl 0

Since the unitary basd$;; satisfy the orthonormal relation (90), we have the constragjuation
of the eigenvalueg,; of the Yang—Baxter gat& (91),

1
7 i (1) (=1)F =2, (132)
k,l1=0
which represent a set of equations given by

to0 (f100 + Ho1 + p1o + pa1) 2; (133)
po1 (oo + po1 — f10 — p11) = 2 (134)
o (Boo — po1 + f10 — p11) = 2 (135)
par (oo — po1 — f10 + p11) = 2. (136)

Solving the above equations, we have three classes of@adLitr the eigenvalugs; as below.

e Class 1:00 = €, o1 = e, uio = e, u11 = —e'®, which determine the Yang—
Baxter gatd/ (@) as
cos ¢ 0 0 isin ¢
. 0 —ising  cos¢ 0
U= _Zouij|w(za)><w<za>| =1 0 cosé —ismé 0 (137)
“= isin ¢ 0 0 cos ¢
e Class 2:g0 = €%, po1 = €7, u1g = —e'®, u;1 = e, which determine the Yang—
Baxter gatd/ (@1) as
cos ¢ 0 0 i sin @
. 0 —ising —cos¢ 0
U= msle@wl = | o s isme o |- 139
HI=0 isin ¢ 0 0 cos ¢
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e Class 3:ju00 = €', o1 = —€', 1o = e, 11 = e~ **, which determine the Yang-—
Baxter gatd/ (@1) as

) 0 0 0 et
.. .. 0 e 0 0

U= wlb@wil=| o "o o o |- (139)
wI=0 € 0 0 0

Similarly, when the unitary basés,,,, are the Pauli gateX, Z and X Z, respectively, the other
solutions of the Yang—Baxter gaté (1) can be obtained. The collection of all the solutions has

been presented il (104) afd (105)[0r(|106)[or(107) (@0g)09).

D Reformulation of the constraint relations (92)-(9%) and [ 11)-
(114)

Both the constraint relations (92)-{95) and the constraiiations[[1IN)E(1T4) looking complicated,
we introduce the new conventions to simplify their formidas. We define the skew-transpose on
the product of two matrices as

(BC)ST = BT CT, (140)

where the skew-transpositi¢il” does not interchangB” andC7 as the ordinary transpose does.
With the new notations given by

1
Might = 5 Mgt Oup = U} Uag, (141)

with specified indicesn andn, the constraint relationg (P2)-(95) have the simplifiedrfer

1

ZnijklokloijTO;Ll = OZ-TT; (142)
k,1=0

1
Z nijklolflTOIjOlngT = Ojﬁ (143)
k,1=0

1

ZnijklOklijTO;Ll = OZ-T; (144)
k,1=0

1
> 0T 0505 = 0y, (145)
k,1=0

where the skew-transpos$#” is commutative with the Hermitian conjugationAs a remark, the
notationO, is introduced to remove the indices andn so that the algebraic structure of the
constraint relationd (92)-(95) is presented in a more parent way. Furthermore, with the new
notation

Nirjringokilikaly = iGiljl Jkily Gizjz-kzb ) (146)
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the constraint relations (111 1)-(1114) have more simplifisufs

1
ST Tt _ ST T,
Z 771'1j1i2j2k1l1k2l20i2j2Ok111 Ok2l2 - Oi1j1 ) (147)
k,1=0
: t
ST At ST _ o
Z ni1j1i2j2k’111k2120i2j2Ok1110k2l2 = Oiljlv (148)
k,1=0
1
ST At _ ST .
Z Mi1jringakilikals Oi2j20k1l10k2l2 - Oi1j1’ (149)
k,1=0
: 1
ST ST _
Z 77i1j1i2j2k1l1k2l20i2j2Ok1l10k2l2 - Oi1j1' (150)
ke 1=0

As a concluding remark, we hope that such the above refotiontaof the constraint relations
(92)-(95) and[(111)E(114) are meaningful and useful elssah
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