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Abstract
In this paper, we investigate the relationship of quantum teleportation in quantum informa-
tion science and the Birman–Murakami–Wenzl (BMW) algebra in low-dimensional topol-
ogy. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which
is generated by both the Temperley–Lieb projector and the Yang–Baxter gate. We describe
quantum teleportation using the Temperley–Lieb projectorand the Yang–Baxter gate, respec-
tively, and study teleportation-based quantum computation using the Yang–Baxter gate. On
the other hand, we exploit the extended Temperley–Lieb diagrammatical approach to clearly
show that the tangle relations of the BMW algebra have a natural interpretation of quantum
teleportation. Inspired by this interpretation, we construct a general representation of the
tangle relations of the BMW algebra and obtain interesting representations of the BMW al-
gebra. Therefore our research sheds a light on a link betweenquantum information science
and low-dimensional topology.
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1 Introduction

Quantum entanglement [1, 2] is the key reason why the quantuminformation processing outper-
forms the classical information processing, and has been widely exploited in quantum information
and computation science. With the help of quantum entanglement, an unknown quantum state can
be transported from one place to another place, dubbed quantum teleportation [3, 4, 5, 6]. On
the other respect, there are natural similarities between quantum entanglement and topological en-
tanglement [7, 8], where the latter characterizes topological configurations of links or knots [9].
Nontrivial unitary solutions of the Yang–Baxter equation [10], called the Yang–Baxter gates, have
been introduced to clarify such similarities [11, 12, 13, 14]. They can detect knots or links and can
be viewed as quantum gates to perform universal quantum computation as well. Note that a thor-
ough understanding about a relation between quantum entanglement and topological entanglement
remains unclear.

The Yang–Baxter equation [10] arose in the study of both 1+1-dimensional quantum many-
body systems and vertex models in statistics physics, and its solution naturally gives rise to a
representation of the braid group describing links or knots[9]. Both the Temperley–Lieb algebra
[15] and the BMW algebra [16] are exploited in the systematicconstruction of solutions of the
Yang–Baxter equation [17, 18, 19]. The Temperley–Lieb algebra is associated with solutions of
the Yang–Baxter equation with two distinctive eigenvaluesand is related to the Jones polynomial in
knot theory [9], whereas the BMW algebra is associated with solutions of the Yang–Baxter equation
with three distinctive eigenvalues and is related to the Kauffman polynomial in knot theory [9].
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Previous research has extensively studied the relationship between quantum teleportation, the
Temperley–Lieb algebra and the Yang–Baxter equation [20, 21]. The extended Temperley–Lieb
diagrammatical approach [20, 21] is devised to characterize topological features of quantum entan-
glement and quantum teleportation. However, the former research either concentrates on the topic
of quantum teleportation using the Yang–Baxter gate or on the topic of quantum teleportation us-
ing the Temperley–Lieb projector. Since a representation of the BMW algebra is generated by both
the Yang–Baxter gate and the Temperley–Lieb projector, there remains a natural question to be
answered: what about quantum teleportation using the BMW algebra? In this paper, we investigate
this problem and expect to find something novel which is not presented in [20, 21].

In the two spin-1/2 representation of the BMW algebra [22, 23], we view the Temperley–Lieb
projector as a two-qubit quantum measurement operator and the unitary braid representation as a
two-qubit entangling gate (the Yang–Baxter gate). We show that the Temperley–Lieb projector and
the Yang–Baxter gate are capable of performing the quantum teleportation protocol, respectively.
Besides, we study the teleportation-based quantum computation [24, 25] using the Yang–Baxter
gate. Furthermore, we realize that the tangle relations defining the BMW algebra involving both
the Temperley–Lieb projector and the Yang–Baxter gate giverise to the teleportation protocol
directly. Moreover, we are able to construct interesting representations of the BMW algebra in the
extended Temperley–Lieb diagrammatical approach [20, 21]different from the representation in
[22, 23].

The paper is organized as follows. Section 2 reviews the two spin-1/2 realization of the BMW
algebra. Section 3 and 4 perform the quantum teleportation protocol via the Temperley–Lieb pro-
jector and the Yang–Baxter gate, respectively. Section 5 isabout the teleportation-based quantum
computation set by the Yang–Baxter gate. Section 6 presentsthe quantum teleportation interpre-
tation of the tangle relations in the BMW algebra. Section 7 describes a method of constructing a
general representation of the tangle relations of the BMW algebra. Section 8 is on concluding re-
marks. Four appendices are added to complete the paper. Appendix A reviews a relation between
the Brauer algebra and quantum teleportation [20], since the BMW algebra is a deformation of
the Brauer algebra [26]. Appendix B collects the extended Temperley–Lieb configurations of the
Yang–Baxter gate which are not in the main context of the paper. Appendix C shows the procedure
of constructing interesting representations of the BMW algebra. Appendix D introduces the new
conventions and notations to simplify some complicated algebraic relations in the paper.

2 Review on the BMW algebra

In this section, we make a brief sketch on the definition of theBMW algebra [16] and its two spin-
1/2 representation [22] in the viewpoint of quantum information and computation. Meanwhile, we
set up notations and conventions for the whole paper. In addition, we make a simple study on the
Brauer algebra [26] in Appendix A whose deformation is the BMW algebra.

The BMW algebraBn(w, σ) [16] contains two complex parametersw andσ, and it has two
types of generators: the one denoted asei associated with the Temperley–Lieb algebra [15] and the
other one denoted asbi associated with the braid group [9], withi = 1, . . . , n−1. The Temperley–
Lieb idempotentsei satisfy the defining relations of the Temperley–Lieb algebra,

e2i = ei, eiei±1ei = d−2ei,
eiej = ejei, |i− j| ≥ 2,

(1)

with d called the loop parameter. The braid generatorsbi satisfy the defining relations of the braid
group,

bibi±1bi = bi±1bibi±1,
bibj = bjbi, |i − j| ≥ 2.

(2)

The first type of the mixed relations between the Temperley–Lieb idempotentsei and the braid
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generatorsbi are given by
bi − b−1

i = w(11 − dei),
eibi = biei = σei,
bi±1eibi±1 = b−1

i ei±1b
−1
i ,

(3)

where11 denotes the identity operator, and the second type of the mixed relations are given by

bi±1biei±1 = eibi±1bi = deiei±1, (4)

which are called the tangle relations in this paper. Note that there is a constraint relation among the
three parametersd, σ, w given byd = 1− (σ − σ−1)/w.

A tensor product representation of the BMW algebraBn(w, σ) can be in general constructed
in the following way. The Temperley–Lieb idempotentsei and the braid generatorsbi assume the
respective forms,

ei = 11⊗(i−1) ⊗ E ⊗ 11⊗(n−i−1), (5)

bi = 11⊗(i−1) ⊗B ⊗ 11⊗(n−i−1), (6)

where the symbolE is called the Temperley–Lieb matrix and the symbolB is called the braid
matrix. It means that the Temperley–Lieb idempotentsei and the braid generatorsbi are acting on
the vector space of theith andi + 1th sites. Furthermore, the braid matrixB has three distinctive
eigenvalues denoted asλ1, λ2 andλ3 with the constraint relationλ2λ3 = −1. The parameterσ is
set asσ = λ1, and the parameterw is set asw = λ2 + λ3.

A spin-1/2 representation is characterized by the two-dimensional Hilbert spaceH2 with the
basis states|0〉 and |1〉. In convention, the state|0〉 stands for spin up and the state|1〉 for spin
down. A single qubit in quantum information and computation[1, 2] can be physically realized
as a spin-1/2 representation, and its quantum state has the form |α〉 = a|0〉 + b|1〉 with complex
numbersa andb satisfying|a|2 + |b|2 = 1. A quantum gate is defined as a unitary transformation
acting on qubits, for example, a single qubit gate includingthe identity operator112, the PauliX
gate and the PauliZ gate given by

112 =

(

1 0
0 1

)

, X =

(

0 1
1 0

)

, Z =

(

1 0
0 −1

)

. (7)

Note thatZ|i〉 = (−1)i|i〉 with i = 0, 1 and the PauliY gate is defined asY = ZX .
A two spin-1/2 representation, which can be recognized as a physical realization of a two-qubit

system, is described by the four-dimensional Hilbert spaceH2 ⊗H2 with the tensor product basis
states|i, j〉 or |ij〉 with i, j = 0, 1. An example for the two spin-1/2 representation of the BMW
algebra has been shown in [22], in which the associated Temperley–Lieb matrixE has the form

E =
1

4









1 ie−iφ ie−iφ e−2iφ

−ieiφ 1 1 −ie−iφ

−ieiφ 1 1 −ie−iφ

e2iφ ieiφ ieiφ 1









, (8)

with the real numberφ, and the associated braid matrixB has the form

B =
ei

3π
4

2









1 −e−iφ −e−iφ −e−2iφ

eiφ 1 −1 e−iφ

eiφ −1 1 e−iφ

−e2iφ −eiφ −eiφ 1









, (9)

with three distinctive eigenvaluesλ1 = ei5π/4, λ2 = ei3π/4 andλ3 = eiπ/4, λ2 being double-
degenerated. The parametersσ, w andd in the BMW algebraBn(w, σ) can be calculated as

σ = λ1 = ei5π/4, w = λ2 + λ3 =
√
2i, d = 1− (σ − σ−1)/w = 2. (10)
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In this paper, since the Temperley–Lieb matrixE satisfies the idempotent relationE2 = E, it
is viewed as a two-qubit projective measurement operator. On the other respect, the braid matrix
B is unitary satisfyingB†B = BB† = 114, and thus it is a two-qubit quantum gate [1, 2], called
the Yang–Baxter gate [20] in the following study.

3 Quantum teleportation using the Temperley–Lieb projector

In this section, we construct a complete set of two-qubit projective measurement operators with
the Temperley–Lieb projectorE (8) as a special case, and then exploit such a set to describe the
quantum teleportation protocol in the extended Temperley–Lieb diagrammatical approach [20, 21].

3.1 The Temperley–Lieb projector as a two-qubit measurement operator

In quantum information and computation [1, 2], the well-known complete set of two-qubit projec-
tive measurement operators is formed by the Bell states [21,27] given by

|ψ(ij)〉 = (112 ⊗Wij)|Ψ〉, i, j = 0, 1, (11)

with the single-qubit gateWij = X iZj and the EPR pair|Ψ〉 = 1√
2
(|00〉+ |11〉), and the Bell pro-

jective measurement operator is denoted by|ψ(ij)〉〈ψ(ij)|. Note that the Bell states|ψ(ij)〉 form
an orthonormal basis for the two-qubit Hilbert spaceH2⊗H2, named the Bell basis. The orthonor-
mal condition for the Bell basis (or the orthonormal condition for the Bell projective measurement
operators) is given by

〈ψ(i2j2)|ψ(i1j1)〉 = δi1i2δj1j2 , (12)

with the Kronecker delta functionδij = 1 for i = j andδij = 0 for i 6= j, which is equivalent to

1

2
tr
(

W †
i2j2

Wi1j1

)

= δi1i2δj1j2 , (13)

with the index† denoting the Hermitian conjugation.
In view of the construction of the Bell projective measurement operators|ψ(ij)〉〈ψ(ij)|, we

reformulate the Temperley–Lieb projectorE (8) as a two-qubit projective operator,

E = |ΨM00
〉〈ΨM00

|, (14)

where the Bell-like state|ΨM00
〉 denotes the EPR pair|Ψ〉 with the local action of the single-qubit

gateM00,
|ΨM00

〉 = (112 ⊗M00)|Ψ〉. (15)

After calculation, the single-qubit gateM00 can be expressed as a product of elementary single-
qubit gates,M00 = RφHSHRφ. The symbolsH , S andRφ stand for the Hadamard gate, the
phase gate and the phase shift gate [1, 2], respectively, andthey are given by

H =
1√
2

(

1 1
1 −1

)

, S =

(

1 0
0 i

)

, Rφ =

(

1 0
0 eiφ

)

. (16)

Note that both the PauliZ gate (7) and the phase gateS are special cases of the phase shift gate
Rφ, namelyZ = Rπ andS = Rπ/2.

Furthermore, a complete set of two-qubit projective measurement operatorsEij including the
Temperley–Lieb projectorE (8) as a special case,E = E00, can be constructed in the way

Eij = |ΨMij
〉〈ΨMij

|, i, j = 0, 1, (17)
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with |ΨMij
〉 = (112 ⊗Mij)|Ψ〉, where the single-qubit gatesMij have the form

M00 = RφHSHRφ, M01 = RφZRφ, M10 = XZ, M11 = RφHS
†HRφ. (18)

Note that the Bell-like states|ΨMij
〉 form an orthonormal basis for the two-qubit Hilbert space

H2 ⊗H2 with the orthonormal condition given by

Ei1j1Ei2j2 = δi1i2δj1j2Ei1j1 , (19)

equivalent to
1

2
tr
(

M †
i2j2

Mi1j1

)

= δi1i2δj1j2 . (20)

Here we make remarks about both the Bell states|ψ(ij)〉 and the Bell-like states|ΨMij
〉. First,

both states can be exactly determined by the complete basis of unitary operatorsWij (orMij) [28].
Second, they are maximally entangled states in quantum information science [1, 2]. Third, all of
the associated two-qubit projective measurement operators are able to generate the representation
of the Temperley–Lieb algebra [20], and thus all of them can be called the Temperley–Lieb algebra
projector.

3.2 Extended Temperley–Lieb configuration of quantum teleportation

In the extended Temperley–Lieb diagrammatical approach [20, 21], the Bell state|Ψ〉 is pictured
as a cup configuration and its complex conjugation〈Ψ| is pictured as a cap configuration; a single-
qubit gate acting on the Bell states is pictured as a solid point on associated configurations. Thus
the Bell projective measurement operators|ψ(ij)〉〈ψ(ij)| have a diagrammatical representation
shown as

rWij

|ψ(ij)〉〈ψ(ij)| =
rW

†
ij

(21)

where the diagram is read from the bottom to the top corresponding to the convention that the
algebraic expression is read from the right to the left. Furthermore, the solid point representing a
single-qubit gateU on the cup or cap configuration is able to flow from the one branch to the other
branch with an additional transpose on such the gateU , shown in

rU = UT r (22)

which is related to the algebraic formula

(112 ⊗ U)|Ψ〉 = (UT ⊗ 112)|Ψ〉, (23)

with the symbolT denoting the matrix transpose. Note that the property that asingle-qubit gate
flows on the configuration plays a crucial role in the extendedTemperley–Lieb diagrammatical
approach to quantum teleportation [20, 21].

In quantum teleportation [3, 4, 5, 6], Alice has an unknown qubit |α〉 to be transmitted to
Bob and meanwhile shares the Bell state|Ψ〉 with Bob, namely, Alice and Bob prepare the state
|α〉 ⊗ |Ψ〉. Such the initial state has the extended Temperley–Lieb configuration,

|α〉 ⊗ |Ψ〉 =
∇

(24)
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where the qubit|α〉 is depicted as a vertical line with the symbol∇ at the bottom. Now Alice
performs the Bell projective measurement|ψ(ij)〉〈ψ(ij)| ⊗ 112 on her qubits, which is illustrated
in the extended Temperley–Lieb configuration,

∇

rW
†
ij

rWij

= 1
2

rWij

∇

rWij (25)

with the dashed line denoting the time boundary between the initial state and the Bell measure-
ments. On the left of the diagram, the identity operator112 is drawn as the single vertical line;
after the single-qubit gateW †

ij flows from Alice’s system to Bob’s system with the transpose,

(W †
ij)

T = Wij , the unknown qubit|α〉 has been transferred from Alice to Bob because of the
topological deformation. On the right of the diagram, the factor1/2 is a normalization factor con-
tributed by a pair of vanishing cup and cap configurations. Therefore, this diagram (25) is related
to the algebraic formalism

(|ψ(ij)〉〈ψ(ij)| ⊗ 112)(|α〉 ⊗ |Ψ〉) = 1

2
|ψ(ij)〉 ⊗Wij |α〉, (26)

which is formulated, with the completeness relation of Bellprojective measurement operators,
∑1

i,j=0 |ψ(ij)〉〈ψ(ij)| = 114, as

|α〉 ⊗ |Ψ〉 = 1

2

1
∑

i,j=0

|ψ(ij)〉 ⊗Wij |α〉, (27)

called the teleportation equation in [21, 27]. Finally, Bobhas to acquire the Bell measurement
results labeled as(i, j) from Alice in order to apply the unitary correction operationsW †

ij on his
qubit to obtain the unknown state|α〉. Note that the teleportation protocol of Bob sending an
unknown qubit|α〉 to Alice can be characterized in

|Ψ〉 ⊗ |α〉 = 1

2

1
∑

i,j=0

WT
ij |α〉 ⊗ |ψ(ij)〉, (28)

called the transpose teleportation equation in [27].

3.3 Quantum teleportation using the Temperley–Lieb projector Eij (17)

In quantum teleportation [3, 4, 5, 6], we are allowed to replace the initial maximal entanglement
resource|Ψ〉 with the Bell-like state|ΨM00

〉 (15) and replace the Bell projective measurement
operator|ψ(ij)〉〈ψ(ij)| with the Bell-like projective operatorEij (17). Similar to the teleportation
configuration (25) using|Ψ〉 and|ψ(ij)〉〈ψ(ij)|, the teleportation of an unknown qubit|α〉 from
Alice to Bob using|ΨM00

〉 andEij has the extended Temperley–Lieb configuration given by

rM00∇

rM
†
ij

rMij

= 1
2

rMij

∇

rM00M∗
ij (29)
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corresponding to the algebraic formula

(|ΨMij
〉〈ΨMij

| ⊗ 112)(|α〉 ⊗ |ΨM00
〉) = 1

2
|ΨMij

〉 ⊗M00M
∗
ij |α〉 (30)

with the symbol∗ denoting the complex conjugation, which can be reformulated as the form of the
teleportation equation,

|α〉 ⊗ |ΨM00
〉 = 1

2

1
∑

i,j=0

|ΨMij
〉 ⊗M00M

∗
ij |α〉. (31)

It is worth mentioning that the single-qubit gateM00 initially acting on the Bell state|Ψ〉 has been
transferred to Bob from Alice and has become the single-qubit gate acting on Bob’s qubit.

Furthermore, the extended Temperley–Lieb configuration ofteleportation of an unknown qubit
|α〉 from Bob to Alice can be drawn as

∇

rMij

rM
†
ij

rM00

= 1
2

rMij

∇

rMT
00

M
†
ij

(32)

which is associated with the transpose teleportation equation

|ΨM00
〉 ⊗ |α〉 = 1

2

1
∑

i,j=0

MT
00M

†
ij |α〉 ⊗ |ΨMij

〉. (33)

Comparing the equation (27) and the equation (28), we see that the matrix transpose is performed
from Wij to WT

ij . By contrast, looking at the equation (31) and the equation (33), we have no

transpose because of(M00M
∗
ij)

T 6=MT
00M

†
ij .

Moreover, wheni = j = 0, the single-qubit gateM00M
∗
ij in the teleportation equation (31) is

identity,M00M
∗
00 = 112, and the Bell-like state|ΨM00

〉 can be prepared by applying the Bell-like
projective measurement operatorE00 (17). Thus the teleportation of an unknown qubit|α〉 from
Alice to Bob can be viewed using the Bell-like projective measurement operatorE00,

(E00 ⊗ 112)(|α〉 ⊗ E00) =
1

2
(|ΨM00

〉 ⊗ |α〉)(112 ⊗ 〈ΨM00
|), (34)

which can be derived from the equation (30). Similarly, the teleportation of an unknown qubit|α〉
from Bob to Alice can be described in the way

(112 ⊗ E00)(E00 ⊗ |α〉) = 1

2
(|α〉 ⊗ |ΨM00

〉)(〈ΨM00
| ⊗ 112), (35)

whereMT
00M

†
00 = 112 has been exploited. Hence the operators(E00 ⊗ 112)(112 ⊗ E00) and(112 ⊗

E00)(E00⊗ 112) are capable of describing the teleportation protocol: the projectorE00 on the right
works as the state preparation channel and the projectorE00 on the left as the Bell measurement.
In general, quantum teleportation can be performed using the operators(Eij ⊗ 112)(112⊗Elm) and
(112 ⊗ Elm)(Eij ⊗ 112) whereEij is not required the same asElm.
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4 Quantum teleportation using the Yang–Baxter gate

In this section, we study the application of the Yang–BaxtergateB (9) to quantum teleportation.
First of all, we show that this gate can be regarded as a generalization of the Bell transform [27]
which is a unitary basis transformation from the product states to the Bell states. In view of pre-
vious research [27] of quantum teleportation using the Belltransform, we introduce the extended
Temperley–Lieb configurations of the Yang–Baxter gateB and focus on the extended Temperley–
Lieb configuration of the teleportation operator(B ⊗ 112)(112 ⊗ B).

4.1 The Yang–Baxter gateB (9) is the Bell transform

The Yang–Baxter gateB (9) acting on the product states gives rise to the Bell stateswith the local
action of single-qubit gates modulo a global phase factor,

B|ij〉 = eiαB (Rφ ⊗RφH)|ψ(ji)〉, (36)

whereeiαB is a phase factor depending on the indicesi andj with i, j = 0, 1. Interestingly, the
inverse of the Yang–Baxter gateB, denoted byB†, acting on the product basis, also generates the
Bell basis with the local action of single-qubit gates,

B†|ij〉 = eiαB† (Rφ ⊗RφH)|ψ(j + 1, i+ 1)〉, (37)

where the factorαB† is distinctive withαB. Therefore, both theB andB† gates are a generalization
of the Bell transform [27] with the additional local action of single-qubit gates. For simplicity, we
call the Yang–Baxter gateB as the Bell transform in this paper3.

Obviously, the Yang–Baxter gateB (or B†) is a maximally entangling two-qubit gate [1, 2],
since the Bell states are maximally entangling two-qubit states and the local action of single-qubit
gates does not change the entanglement property of the Bell states. Any two-qubit gateU [29] is
locally equivalent to the two-qubit gateei(aX⊗X+bY ⊗Y+cZ⊗Z) modulo local action of single-qubit
gates with three non-local real parameters(a, b, c), and the entangling power [30] of the two-qubit
gateU can be defined as

ep(U) = 1− cos2 2a cos2 2b cos2 2c− sin2 2a sin2 2b sin2 2c (39)

ranged from 0 to 1, whereep(U) = 1 means that theU gate is a maximally entangled two-qubit
gate. After some algebra, the non-local parameters(a, b, c) for the Yang–Baxter gateB take the
value of(π4 ,

π
4 , 0), soep(B) = 1.

In addition, the Yang–Baxter gateB can be decomposed as a tensor product of elementary
quantum gates expressed as

B = ei
3

4
π(Rφ ⊗Rφ)CZ(HZ ⊗HZ)CZ(R†

φ ⊗R†
φ), (40)

where theCZ gate [1, 2] has the conventional form

CZ= |0〉〈0| ⊗ 112 + |1〉〈1| ⊗ Z. (41)

3 The Bell transformBell in this paper is defined as

Bell =
1∑

k′,l′=0

eiφkl (Skl ⊗Qkl)|ψ(k, l)〉〈k
′, l′|, (38)

wherek = k(k′, l′) andl = l(k′, l′) are bijective functions ofk′ andl′, respectively;eiφkl is the phase factor; andSkl

andQkl are single-qubit gates. Such the definition of the Bell transform differs from the proposed definition of the Bell
transform in previous research [27] where single-qubit gatesSkl andQkl are not involved.
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The quantum circuit corresponding to such a decomposition is illustrated inThe quantum circuit corresponding to such a decomposition is illustrated in

B

❅
❅
❅  

  
=

R
†
φ

• HZ • Rφ

R
†
φ

• HZ • Rφ

(42)

where the over-crossing feature in the box means that the gate is a braiding operator [9], and the

overall phase is neglected, and the configuration of two solid points connected with a vertical

line represents the CZ gate (41). Note that the decomposition (40) of the gate using at least two

CZ gates is optimal according to the criterion [31] of calculating the least number of the CZ gate

to perform a given two-qubit gate.

4.2 Extended Temperley–Lieb configurations of the Yang–Baxter gate

In accordance with previous research [21, 27], a given Yang–Baxter gate is allowed to have various

of equivalent extended Temperley–Lieb configurations. Here we investigate at least five types of

extended Temperley–Lieb configurations of the Yang–Baxter gate (9), three of which will be

presented in this subsection and the remaining two of which will be presented in Appendix B.

The formula (36) verifies that the Yang–Baxter gate (9) is the Bell transform (38) and the

associated Bell transform is expressed as

k,l=0

iα lk 〉〈kl (43)

With the definition of the Bell basis (11) and the flow (23) of a single-qubit gate on the Bell state

, the Yang–Baxter gate can be further reformulated as

k,l=0

(11 kl 〉〈kl (44)

with kl
iα HX . So the first extended Temperley–Lieb configuration of the Yang–

Baxter gate is pictured as

k,l=0

kl

△ △
(45)

where the vertical line with the symbol represents the state and such the line with the action

of the Pauli gate represents the state . Note that this configuration is read from the bottom to

the top, different from the convention of reading the quantum circuit (42) from the left to the right.

Furthermore, the formula (37) verifies that the inverse of the Yang–Baxter gate is also the

Bell transform (38) and surprisingly after some algebra the Yang–Baxter gate can be related to

the inverse of Yang–Baxter gate with the local action of the single-qubit gate,

i,j=0

ij〉〈 (11 ij (46)

(42)

where the over-crossing feature in the box means that theB gate is a braiding operator [9], and the
overall phaseei

3

4
π is neglected, and the configuration of two solid points connected with a vertical

line represents theCZ gate (41). Note that the decomposition (40) of theB gate using at least two
CZ gates is optimal according to the criterion [31] of calculating the least number of theCZ gate
to perform a given two-qubit gate.

4.2 Extended Temperley–Lieb configurations of the Yang–Baxter gateB (9)

In accordance with previous research [21, 27], a given Yang–Baxter gate is allowed to have various
of equivalent extended Temperley–Lieb configurations. Here we investigate at least five types of
extended Temperley–Lieb configurations of the Yang–BaxtergateB (9), three of which will be
presented in this subsection and the remaining two of which will be presented in Appendix B.

The formula (36) verifies that the Yang–Baxter gateB (9) is the Bell transform (38) and the
associated Bell transform is expressed as

B =
1

∑

k,l=0

eiαB (Rφ ⊗RφH)|ψ(lk)〉〈kl|. (43)

With the definition of the Bell basis (11) and the flow (23) of a single-qubit gate on the Bell state
|Ψ〉, the Yang–Baxter gateB can be further reformulated as

B =

1
∑

k,l=0

(112 ⊗ Vkl)|Ψ〉〈kl| (44)

with Vkl = eiαBRφHX
lZkRφ. So the first extended Temperley–Lieb configuration of the Yang–

Baxter gateB is pictured as

B

❅
❅
❅��

�� =
∑1

k,l=0

rVkl

rXlrXk
△ △

(45)

where the vertical line with the symbol△ represents the state〈0| and such the line with the action
of the Pauli gateX represents the state〈1|. Note that this configuration is read from the bottom to
the top, different from the convention of reading the quantum circuit (42) from the left to the right.

Furthermore, the formula (37) verifies that the inverse of the Yang–Baxter gateB is also the
Bell transform (38) and surprisingly after some algebra theYang–Baxter gateB can be related to
the inverse of Yang–Baxter gateB with the local action of the single-qubit gate,

B =

1
∑

i,j=0

|ij〉〈Ψ|(112 ⊗ Uij) (46)
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with Uij = e−iα
B†R†

φZ
i+1Xj+1HR†

φ. Thus the second extended Temperley–Lieb configuration
of the Yang–Baxter gateB is shown in

B

❅
❅
❅��

�� =
∑1

i,j=0

rXjrXi

∇ ∇

rUij

(47)

which appears quite different from the configuration (45), although they describe the same Yang–
Baxter gateB (9).

Moreover, the third extended Temperley–Lieb configurationof the Yang–Baxter gateB is due
to the application of the spectral theorem [1], that is, the Yang–Baxter gateB has the decomposition

B =

1
∑

i,j=0

λijEij , (48)

where the Temperley–Lieb projectorsEij (17) are eigenstates of the Yang–Baxter gateB with
the respective eigenvaluesλ00 = ei5π/4, λ01 = λ10 = ei3π/4 andλ11 = eiπ/4. The associated
extended Temperley–Lieb configuration of the Yang–Baxter gateB is shown as

B

❅
❅
❅��

�� =
∑1

i,j=0 λij

rMij

rM
†
ij

(49)

with single-qubit gatesMij defined in (18).
Although three configurations (45), (47) and (49) of the Yang–Baxter gateB are equivalent,

when and how they will be exploited completely depend on a specific circumstance; for example,
the first and second configurations are immediately applied in the following subsection and the
third configuration will be used in Section 6.

4.3 Quantum teleportation using the Yang–Baxter gateB (9)

The quantum teleportation [3, 4, 5, 6] can be characterized by the teleportation operator [21, 27],
which is the tensor product in terms of the identity operator, the Bell transform and its inverse. Here
the Yang–Baxter gateB is the Bell transform (38), see (36) and (44), and especiallythe inverse of
the Yang–Baxter gateB is related to the Yang–Baxter gateB by the local action of single-qubit
gates, see (37) and (46). Hence we define the teleportation operator as the tensor product in terms
of the identity operator and the Yang–Baxter gateB, namely(B ⊗ 112)(112 ⊗ B) for simplicity
(instead of(B−1 ⊗ 112)(112 ⊗B) orginally introduced in [21, 27]).

With two types of the extended Temperley–Lieb configurations (45) and (47) of the Yang–
Baxter gateB, the extended Temperley–Lieb configuration of the teleportation operator(B ⊗
112)(112 ⊗B) is illustrated in

❅
❅
❅��

��

❅
❅
❅��

��

=
∑1

i,j,k,l=0

rXjrXi

∇ ∇

rUij

rXlrXk

△ △

rVkl =
∑1

i,j,k,l=0

rXjrXi

∇ ∇

rXlrXk

△ △

rWi,j,k,l

(50)
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where the single-qubit gateUij (46) flows from Alice’s system to Bob’s system with the transpose
and the single-qubit gateWi,j,k,l has the form

Wi,j,k,l = VklU
T
ij = (−1)l·(k+j+1)ei(αB−α

B† )RφX
j+k+1Zi+l+1R†

φ. (51)

In view of this configuration, it is obvious that an unknown qubit |α〉 can be transmitted from
Alice to Bob by topological deformation with the additionalaction of the single-qubit gateWi,j,k,l.
Consider the action of the teleportation operator(B⊗112)(112⊗B) on the initial state|α〉|kl〉. With
the help of the configuration (50), the corresponding teleportation equation is expressed as

(B ⊗ 112)(112 ⊗B)|α〉|kl〉 = 1

2

1
∑

i,j=0

|ij〉 ⊗Wi,j,k,l|α〉, (52)

where the factor1/2 is due to the vanishing of a pair of cup and cap configurations.To complete
the teleportation protocol, Alice performs the product basis measurement|ij〉〈ij| on her qubits and
then informs the measurement results(i, j) to Bob. Afterwards, Bob applies the unitary correction
gateW †

i,j,k,l on his qubit to obtain the transmitted state|α〉.
Two remarks are made. First, the fact that the teleportationoperator(B ⊗ 112)(112 ⊗ B) suc-

cessfully describes quantum teleportation means that the definition of the Bell transform (38) with
additional local action of single-qubit gates is an appropriate generalization of the definition of the
Bell transform in [27]. Second, the notationWi,j,k,l (52) is not the notationWij in (11). The
single-qubit gateWi,j,k,l in the teleportation equation (52) is in general not the Pauli gate because
single-qubit gatesVkl (44) andUij (46) are usually not the Pauli gates, whereas the corresponding
single-qubit gate in the teleportation equation derived in[21, 27] is always the Pauli gate. In this
sense, quantum teleportation using the Yang–Baxter gateB (9) is beyond the standard quantum
teleportation in [3, 4, 5, 6] and [21, 27].

5 Teleportation-based quantum computation using the Yang–
Baxter gate

In fault-tolerant quantum computation [1, 2], Clifford gates [1, 32] such as the Hadamard gate
and the phase gate (16) and theCZ gate (41), can be fault-tolerantly performed in a systematic
approach, but how a non-Clifford gate such as a specific phaseshift gateRφ (16) with φ = π/8
(called theπ/8 gate or theT gate,T = Rπ/8), can be fault-tolerantly performed is not that explicit.
Teleportation-based quantum computation [24, 25] is a typeof fault-tolerant quantum computation
in which the problem of how to fault-tolerantly perform non-Clifford gates becomes the problem
of how to fault-tolerantly perform Clifford gates with the aid of quantum teleportation.

In this section, first of all, we verify the Yang–Baxter gateB0 (53) as a Clifford gate, which is
the Yang–Baxter gateB (9) with the specific phase parameterφ = 0, and derive the teleportation
equations using such the gateB0. Secondly, we study the fault-tolerant construction of single-qubit
gates and two-qubit gates in teleportation-based quantum computation using the Yang–Baxter gate
B0 (53).

5.1 The Yang–Baxter gateB0 (53) is a Clifford gate

A Clifford gate [1, 32] is expressed as a tensor product of theHadamard gateH and the phase gate
S (16) and theCZ gate (41); equivalently, tensor products of the Pauli matrices with phase factors
±1,±i are preserved under conjugation of Clifford gates. Hence the Pauli gates with overall phases
±1, ±i are the simplest examples for Clifford gates. Note that Clifford gates play crucial roles in
fault-tolerant quantum computation [1, 32].
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The Yang–Baxter gateB (9) is in general not a Clifford gate due to the phase shift gateRφ

(16) in its decomposition formula (40). When the phase factor is zero, namelyφ = 0, however, the
phase shift gateRφ becomes the identity matrix and the associated Yang–Baxtergate denoted as
B0 given by

B0 = CZ(HZ ⊗HZ)CZ (53)

with Z = S2 modulo the overall phaseei
3

4
π is obviously a Clifford gate. The transformation

properties of tensor products of the Pauli matrices under conjugation by the Yang–Baxter gateB0

shown below

B0(X ⊗ 112)B
†
0 = −(112 ⊗X), B0(112 ⊗X)B†

0 = −(X ⊗ 112),

B0(Z ⊗ 112)B
†
0 = (X ⊗ Z), B0(112 ⊗ Z)B†

0 = (Z ⊗X),
(54)

also verify the Yang–Baxter gateB0 as a Clifford gate.
The Yang–Baxter gateB (9) and its inverseB† are the Bell transform (38), and thus the Yang–

Baxter gateB0 (53) and its inverseB†
0 are too. TheB0 gate acting on the product basis gives rise

to the Bell basis with the local action of the Hadamard gate,

B0|ij〉 = (−1)i+j+i·j(112 ⊗H)|ψ(ji)〉, (55)

which is the special case of (36) withφ = 0, and the same is true for the gateB†
0,

B†
0|ij〉 = (−1)i·j(112 ⊗H)|ψ(j + 1, i+ 1)〉, (56)

which is the special example of (37) withφ = 0.
Consider the special case of the teleportation equation (52) atφ = 0. The associated teleporta-

tion operator(B0 ⊗ 112)(112 ⊗B0) gives rise to the teleportation equation

(B0 ⊗ 112)(112 ⊗B0)|α〉|kl〉 =
1

2

1
∑

i,j=0

|ij〉 ⊗Ki,j,k,l|α〉 (57)

where single-qubit gatesKi,j,k,l = (−1)j·l+i·j+kXj+k+1Zi+l+1 are the Pauli gates with phase
factors. Furthermore, the teleportation operator can be defined in the other way, namely(112 ⊗
B0)(B0 ⊗ 112) (refer to [21]), and it is related to the teleportation equation

(112 ⊗B0)(B0 ⊗ 112)|kl〉|α〉 =
1

2

1
∑

i,j=0

Li,j,k,l|α〉 ⊗ |ij〉, (58)

whereLi,j,k,l = (−1)i·k+i·j+lX i+l+1Zj+k+1. Both types of the teleportation equations using
the Yang–Baxter gateB0 are to be exploited in the fault-tolerant construction of quantum gates in
teleportation-based quantum computation in the followingsubsection.

5.2 Fault-tolerant construction of a universal quantum gate set

The detailed strategy of fault-tolerantly constructing single-qubit gates and two-qubit gates in
teleportation-based quantum computation has been presented in [21], and hence we will make a
brief sketch on the relevant results in this paper.

In quantum circuit model [1], single-qubit gates with an entangling two-qubit gate form a uni-
versal quantum gate set, namely all quantum gates can be generated as a tensor product of gates
from this gate set. All single-qubit gates can be generated from the Hadamard gateH and theT
gate (T = Rπ/8) [33]. The Yang–Baxter gateB0 (53) is the Bell transform and so it is a maximal
entangling two-qubit gate. Therefore, the quantum gate setincluding the single-qubit gatesH , T
and the Yang–Baxter gateB0 is a universal quantum gate set.
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To fault-tolerantly perform a single-qubit gateU on an unknown qubit state|α〉, namelyU |α〉,
we prepare the product state|α〉|kl〉, then firstly apply(112⊗B0) and secondly apply(112⊗112⊗U),
so that the prepared state has the form,

(112 ⊗ 112 ⊗ U)(112 ⊗B0)|α〉|kl〉, (59)

where the single-qubit gateU is acting on the entangled stateB0|kl〉. Thirdly, we apply(B0⊗ 112)
on such the prepared state in order to derive the teleportation equation given by

(B0 ⊗ 112)(112 ⊗ 112 ⊗ U)(112 ⊗B0)|α〉|kl〉 =
1

2

1
∑

i,j=0

|ij〉 ⊗Ri,j,k,lU |α〉, (60)

whereRi,j,k,l = UKi,j,k,lU
†. Finally, we apply the local unitary correction operator(112 ⊗ 112 ⊗

R†
i,j,k,l) to obtain the expected resultU |α〉. When the single-qubit gateU is a Clifford gate such

as the Hadamard gateH , the related single-qubit gatesR(H)i,j,k,l have the form

R(H)i,j,k,l = HKi,j,k,lH
† = (−1)j·l+i·j+kZj+k+1X i+l+1, (61)

which are Pauli gates with overall phases. WhenU is a non-Clifford gate such as theT gate, the
single-qubit gatesR(T )i,j,k,l have the form

R(T )i,j,k,l = TKi,j,k,lT
† = (−1)j·l+i·j+k

(

X −
√
−1Y√
2

)j+k+1

Zi+l+1, (62)

with
√
−1 denoting the imaginary unit, which are the Clifford gates. Therefore, the task of fault-

tolerantly performing the non-Clifford gateT in teleportation-based quantum computation has
changed as the task of fault-tolerantly preparing the initial state(112 ⊗ 112 ⊗ T )(112 ⊗ B0)|α〉|kl〉
and fault-tolerantly performing the Clifford gateR(T )i,j,k,l.

To fault-tolerantly perform the Yang–Baxter gateB0 on an unknown two-qubit state|αβ〉,
namelyB0|αβ〉, we fault-tolerantly prepare the initial state

(112 ⊗B0 ⊗ 112)(B0 ⊗B0)(|k1l1〉 ⊗ |k2l2〉), (63)

and then perform a three-fold tensor product of the Yang–Baxter gateB0 on such the prepared
state, so that we have the teleportation equation

(B0 ⊗B0 ⊗B0)(112 ⊗B0 ⊗B0 ⊗ 112)(|α〉 ⊗ |k1l1〉)⊗ (|k2l2〉 ⊗ |β〉)

=
1

4

1
∑

i1,j1=0

1
∑

i2,j2=0

(114 ⊗Q⊗ P ⊗ 114)(|i1j1〉 ⊗B0|αβ〉 ⊗ |i2j2〉), (64)

where the tensor product of the single-qubit gatesQ andP is defined as

Q ⊗ P = B0(Ki1,j1,k1,l1 ⊗ Li2,j2,k2,l2)B
†
0, (65)

with the single-qubit gatesKi1,j1,k1,l1 andLi2,j2,k2,l2 defined in the teleportation equations (57)
and (58), respectively. After some algebra, the single-qubit gatesQ andP are found to be the Pauli
gates with phase factors,

Q = (−1)(k1+1)·(i1+l1+1)+1X i1+i2+l1+l2Zj2+k2+1; (66)

P = (−1)i2·(k2+j2+1)+1Zi1+l1+1Xj1+k1+j2+k2 , (67)

where the relations (54) have been exploited.
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6 Interpretation of the tangle relations (4) of the BMW algebra
via quantum teleportation

In the previous sections, we have reformulated the standarddescription of quantum teleporta-
tion using the Temperley–Lieb projector and described bothquantum teleportation protocol and
teleportation-based quantum computation using the Yang–Baxter gate. On the other hand, the
mixed relations of the BMW algebra involving both the Temperley–Lieb projector and the Yang–
Baxter gate, such as the tangle relations (4), have not been considered so far. In this section, there-
fore, we clearly show that the tangle relations of the BMW algebra have a natural interpretation of
quantum teleportation.

First of all, from the tangle relations (4), we derive the constraint equations of single-qubit
gatesMij (18) which define both the Temperley–Lieb projectorEij (17) and the Yang–Baxter
gateB (48). For convenience, we make a theorem to summarize our research results and present
a detailed proof for it. Secondly, throughout the proof, we realize that the tangle relations of the
BMW algebra are associated with the teleportation equations characterizing quantum teleportation,
which is summarized in the corollary to the theorem.

Theorem 1. In terms of the Temperley–Lieb matrixE (8) and the Yang–Baxter gateB (9), the four
matrix expressions of the tangle relations (4) of the BMW algebra given by

(B ⊗ 112)(112 ⊗B)(E ⊗ 112) = 2(112 ⊗ E)(E ⊗ 112); (68)

(112 ⊗B)(B ⊗ 112)(112 ⊗ E) = 2(E ⊗ 112)(112 ⊗ E); (69)

(E ⊗ 112)(112 ⊗B)(B ⊗ 112) = 2(E ⊗ 112)(112 ⊗ E); (70)

(112 ⊗ E)(B ⊗ 112)(112 ⊗B) = 2(112 ⊗ E)(E ⊗ 112), (71)

are respectively reduced to the constraint equations of single-qubit gatesMij (18) given by

1
∑

k,l=0

λijλklMklM
∗
ijM

T
00M

†
kl = 2M00M

∗
ij ; (72)

1
∑

k,l=0

λijλklM
T
klM

†
ijM00M

∗
kl = 2MT

00M
†
ij ; (73)

1
∑

k,l=0

λijλklMklM
∗
00M

T
ijM

†
kl = 2MT

ijM
†
00; (74)

1
∑

k,l=0

λijλklM
T
klM

†
00MijM

∗
kl = 2MijM

∗
00, (75)

where the parametersλij are the eigenvalues of the Yang–Baxter gateB (48) and single-qubit
gatesMij (18) are bases of unitary matrices defining the Temperley–Lieb projectorEij (17).

Proof. As an example, let us derive the first constraint equation (72) of single-qubit gatesMij from
the first tangle relation (68). We apply both sides of the equation (68) on|ΨM00

〉 ⊗ |α〉 with the
Bell-like state|ΨM00

〉 (15) and an unknown qubit|α〉, so that we have

(B ⊗ 112)(112 ⊗B) (|ΨM00
〉 ⊗ |α〉) = 2(112 ⊗ E)(|ΨM00

〉 ⊗ |α〉), (76)

whereE = |ΨM00
〉〈ΨM00

| has been exploited.
With the teleportation equation (35), the right-hand side of the equation (76) is equal to|α〉 ⊗

|ΨM00
〉, which can be further reformulated with the teleportation equation (31), so that we have

2(112 ⊗ E)(|ΨM00
〉 ⊗ |α〉) = 1

2

1
∑

i,j=0

|ΨMij
〉 ⊗M00M

∗
ij |α〉. (77)

14



With the spectral decomposition of the Yang–Baxter gateB (48), the left-hand side of the equation
(76) can be calculated as follows,

(B ⊗ 112)(112 ⊗B)(|ΨM00
〉 ⊗ |α〉)

=

1
∑

i,j=0

1
∑

k,l=0

λijλkl

(

(Mij ,M
†
ij)⊗ 112

)(

112 ⊗ (Mkl,M
†
kl)

)

(|ΨM00
〉 ⊗ |α〉)

=
1

4

1
∑

i,j=0

1
∑

k,l=0

λijλkl|ΨMij
〉 ⊗MklM

∗
ijM

T
00M

†
kl|α〉, (78)

where the symbol(Mij ,M
†
ij) denotes the Bell-like projective measurement operator,

(Mij ,M
†
ij) ≡ |ΨMij

〉〈ΨMij
|. (79)

Comparing both the equation (77) and the equation (78), we have

1

4

1
∑

i,j=0

1
∑

k,l=0

λijλkl|ΨMij
〉 ⊗MklM

∗
ijM

T
00M

†
kl|α〉 =

1

2

1
∑

i,j=0

|ΨMij
〉 ⊗M00M

∗
ij |α〉, (80)

which gives rise to the first constraint equation (72). Note that the relation (72) is the necessary
and sufficient condition for the relation (80) due to the facts that the Bell-like states|ΨMij

〉 form
an orthonormal basis of the two-qubit Hilbert space and the unknown state|α〉 is arbitrary.

Similarly, the remaining tangle relations (69)-(71) can bereplaced by

(112 ⊗B)(B ⊗ 112)(|α〉 ⊗ |ΨM00
〉) = 2(E ⊗ 112)(|α〉 ⊗ |ΨM00

〉); (81)

(〈ΨM00
| ⊗ 〈α|)(112 ⊗B)(B ⊗ 112) = 2(〈ΨM00

| ⊗ 〈α|)(112 ⊗ E); (82)

(〈α| ⊗ 〈ΨM00
|)(B ⊗ 112)(112 ⊗B) = 2(〈α| ⊗ 〈ΨM00

|)(E ⊗ 112), (83)

which can be respectively used to derive the constraint relations (73)-(75).

Obviously, the above algebraic proof has a topological diagrammatical interpretation in the
extended Temperley–Lieb diagrammatical approach. Note that the operator(B ⊗ 112)(112 ⊗ B)
in the tangle relations (68)-(71) does not play as the teleportation operator in the teleportation
equation (52) because it is not acting on the product state. Hence it is not appropriate to choose
the extended Temperley–Lieb configurations of the Yang–Baxter gateB such as (45) and (47) in
the following discussion. Instead, we take account of the configuration (49) of the Yang–Baxter
gateB to study the configuration of the tangle relations of the BMW algebra. The topological
diagrammatical representation for the algebraic calculation in (78) is illustrated in

❅
❅❅��

��

❅
❅❅��

��

rM00

∇

=
∑1

i,j,k,l=0 λijλkl

rMij

rM
†
ij

rM
†
kl

∇

rMkl

rM00

= 1
4

∑1
i,j,k,l=0 λijλkl

rMij
rMklM

∗
ij

MT
00

M
†
kl

∇
(84)

where the factor14 is due to the vanishing of two pairs of the cap and cup configurations in the
topological straightening deformation and before such thedeformation all relevant single-qubit
gates have to be moved with the matrix transpose rule (23) of flowing a single-qubit gate.

Looking at both the algebraic and topological proofs for Theorem 1, we see that each of the
tangle relations of the BMW algebra is associated with the corresponding teleportation equation.
This observation can be summarized in Corollary 1 to Theorem1.
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i,j=0
1)

ij

ij

(23)

00

i,j,k,l=0 ij kl

ij

ij

kl

kl

00

i,j,k,l=0 ij kl ij kl ij 00 kl (24)

00

ij

ij ij

00 ij
(25)

00

(26)

∇

rMij
rM00M∗

ij
1

2

∑
1

i,j=0

(4)

∇

rM00

(2)

❅
❅
❅  

  

❅
❅
❅  

  

rM00

∇

(1)

rM00

rM
†
00

rM00

∇

2

(3)

(27)

Figure 1: Relationship between the tangle relation (68) andthe teleportation equation (31) or (85)
in the topological diagrammatical representation. Let us explain the symbols (1), (2), (3) and (4),
respectively. (1) The top two diagrams represent the tanglerelation (76). (2) With the extended
Temperley–Lieb configuration (49) of the Yang–Baxter gateB and the constraint relation (72), the
left-hand side of the tangle relation (68) can be simplified into the right-hand side of the telepor-
tation equation (85), refer to both (78) and (84). (3) The right-hand side of the tangle relation
(68) can be deformed into the left-hand side of the teleportation equation (85) with the topological
straightening operation. (4) The bottom two diagrams represent the teleportation equation (85).

Corollary 1. The four matrix expressions of the tangle relations (68)-(71) of the BMW algebra are
respectively associated with the teleportation equations,

|α〉 ⊗ |ΨM00
〉 =

1

2

1
∑

i,j=0

|ΨMij
〉 ⊗M00M

∗
ij |α〉; (85)

|ΨM00
〉 ⊗ |α〉 =

1

2

1
∑

i,j=0

MT
00M

†
ij |α〉 ⊗ |ΨMij

〉; (86)

〈α| ⊗ 〈ΨM00
| =

1

2

1
∑

i,j=0

〈ΨMij
| ⊗ 〈α|MT

ijM
†
00; (87)

〈ΨM00
| ⊗ 〈α| =

1

2

1
∑

i,j=0

〈α|MijM
∗
00 ⊗ 〈ΨMij

|. (88)

Proof. For example, we draw Figure 1 to understand the relationshipbetween the tangle relation
(68) and the teleportation equation (31) or (85). In Figure 1, the top two diagrams represent the tan-
gle relation (68) and the bottom two diagrams are derived from the top two diagrams, respectively,
with the topological straightening deformation. The bottom two diagrams are just both sides of
the teleportation equation (85). Note that the constraint relation (72) has been already assumed in
our study. Similarly, the other three tangle relations (69)-(71) respectively lead to the teleportation
equations (86)-(88).

Therefore, in the extended Temperley–Lieb diagrammaticalapproach, the tangle relations (4)
of the BMW algebra consisting of both the Temperley–Lieb projector and the Yang–Baxter gate
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admit an interesting interpretation of quantum teleportation. Note that such the relationship is
independent of the specific representation of the Temperley–Lieb projector and the Yang–Baxter
gate, such as (8) and (9) presented in the reference [22]. In view of this fact, furthermore, we
will investigate the subject of how to derive a general representation of the BMW algebra in the
extended Temperley–Lieb diagrammatical approach in the next section.

7 General construction of a representation of the tangle rela-
tions (4) of the BMW algebra

It is well-known that how to construct an interesting braid representation (2) (or an interesting
solution of the Yang–Baxter equation [10]) is always a meaningful and challenge problem in the
research frontier, refer to [9, 10, 11, 12, 13, 21, 34], and the same is true for the construction of
an interesting representation of the BMW algebra [16], refer to [9, 17, 18, 19, 22, 23]. In the
previous research [21], a method of constructing the Yang–Baxter gate in the extended Temperley–
Lieb diagrammatical approach has been proposed, and hence in this section we want to exploit the
extended Temperley–Lieb diagrammatical approach to construct interesting representations of the
BMW algebra different from the representation using the Temperley–Lieb projectorE (8) and the
Yang–Baxter gateB (9). In view of the research result in the last section that the tangle relations
(4) of the BMW algebra have a natural interpretation of quantum teleportation in the extended
Temperley–Lieb diagrammatical approach, first of all, we focus on the general construction of the
representation of the tangle relations (4) of the BMW algebra.

Looking at Theorem 1, we see that the tangle relations of the BMW algebra give rise to the
constraint relations of single-qubit gates defining both the Temperley–Lieb projector and the Yang–
Baxter gate. Hence we assume that the Temperley–Lieb projector Ẽ and the Yang–Baxter gateU
have the form in terms of the Bell-like basis|ΨUij

〉 given by

|ΨUij
〉 = (112 ⊗ Uij)|Ψ〉 (89)

with single-qubit gatesUij satisfying the orthonormal condition

1

2
tr
(

U †
i2j2

Ui1j1

)

= δi1i2δj1j2 , (90)

and then require them to satisfy the tangle relations of the BMW algebra in order to derive the
constraint equations of single-qubit gatesUij .

Theorem 2. The Temperley–Lieb projector̃E assumes the form̃E = |ΨUmn
〉〈ΨUmn

| with spec-
ifiedm,n and the Yang–Baxter gateU assumes the form of the spectral decomposition given by

U =

1
∑

i,j=0

µij |ΨUij
〉〈ΨUij

|, (91)

with eigenvaluesµij . When single-qubit gatesUij , i, j = 0, 1 and the specified single-qubit gate
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Umn satisfy the constraint relations:

1

2

1
∑

k,l=0

µijµklU
†
mnUklU

∗
ijU

T
mnU

†
klUmn = U∗

ijU
T
mn; (92)

1

2

1
∑

k,l=0

µijµklU
∗
mnU

T
klU

†
ijUmnU

∗
klU

T
mn = U †

ijUmn; (93)

1

2

1
∑

k,l=0

µijµklU
†
mnUklU

∗
mnU

T
ijU

†
klUmn = U∗

mnU
T
ij ; (94)

1

2

1
∑

k,l=0

µijµklU
∗
mnU

T
klU

†
mnUijU

∗
klU

T
mn = U †

mnUij , (95)

the Temperley–Lieb projector̃E and the Yang–Baxter gateU satisfy the tangle relations (4) of the
BMW algebra.

Proof. The proof is a direct generalization of the proof for Theorem1. For example, we derive
the constraint relation (92) from the tangle relation usingthe Temperley–Lieb projector̃E and the
Yang–Baxter gateU given by

(U ⊗ 112)(112 ⊗ U)(Ẽ ⊗ 112) = 2(112 ⊗ Ẽ)(Ẽ ⊗ 112). (96)

Both sides of the equation (96) acting on|ΨM00
〉 ⊗ |α〉 give rise to

1
∑

i,j=0

1
∑

k,l=0

µijµkl

(

(Uij , U
†
ij), 112

)(

112, (Ukl, U
†
kl)

)

(|ΨUmn
〉 ⊗ |α〉)

= 2
(

112, (Umn, U
†
mn)

)

(|ΨUmn
〉 ⊗ |α〉) , (97)

with the Bell-like projector(Uij , U
†
ij) defined in (79), which can be simplified with the help of

extended Temperley–Lieb configurations such as (32) and (84),

1

4

1
∑

i,j=0

1
∑

k,l=0

|ΨUij
〉 ⊗ µijµklUklU

∗
ijU

T
mnU

†
kl|α〉 = UT

mnU
†
mn|α〉 ⊗ |ΨUmn

〉. (98)

Furthermore, with the teleportation equation of describing the transport of the unknown qubit|β〉 =
UT
mnU

†
mn|α〉,

|β〉 ⊗ |ΨUmn
〉 = 1

2

1
∑

i,j=0

|ΨUij
〉 ⊗ UmnU

∗
ij |β〉, (99)

which can be derived with the extended Temperley–Lieb configuration (29), the equation (98) leads
to the constraint relation of single-qubit gatesUij ,

1

2

1
∑

k,l=0

µijµklUklU
∗
ijU

T
mnU

†
klUmnU

∗
mn = UmnU

∗
ij , (100)

which is equivalent to (92).

Corollary 2. The eigenvaluesµij of the Yang–Baxter gateU (91) satisfy the constraint relation

1

2

1
∑

k,l=0

µmnµkl = 1, (101)

when the Temperley–Lieb projectorẼ and the Yang–Baxter gateU satisfy the tangle relations (4)
of the BMW algebra.
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Proof. The trace of the constraint relation (92) has the form

1

2

1
∑

k,l=0

µijµkltr
(

U †
mnUklU

∗
ijU

T
mnU

†
klUmn

)

= tr
(

U∗
ijU

T
mn

)

(102)

which leads to
1

2

1
∑

k,l=0

µijµklδimδjn = δimδjn, (103)

where the orthonormal condition (90) for the Bell-like basis states|ΨUij
〉 has been applied. Both

sides of the constraint relation (103) have the summation over the indicesi, j, which completes the
proof for the corollary.

As an example, we solve the constraint relations (92)-(95) to obtain interesting representations
of the BMW algebra. The unitary basesUij are set asWij = X iZj defining the Bell states
|ψ(ij)〉 (11), and the unitary matrixUmn defining the Temperley–Lieb projector̃E is also chosen as
Umn = XmZn. The detailed calculation is shown in Appendix C, and the results are summarized
as follows.

• The Temperley–Lieb projector̃E has the form

Ẽ =
1

2









1 0 0 ǫ
0 0 0 0
0 0 0 0
ǫ 0 0 1









, (104)

whereǫ = 1 for Ẽ = |ψ(00)〉〈ψ(00)| and ǫ = −1 for Ẽ = |ψ(01)〉〈ψ(01)|, and the
associated Yang–Baxter gateU has the form

U =









cosφ 0 0 i sinφ
0 −iǫ sinφ ± cosφ 0
0 ± cosφ −iǫ sinφ 0

i sinφ 0 0 cosφ









, (105)

or

U =









0 0 0 eiφ

0 ǫe−iφ 0 0
0 0 ǫe−iφ 0
eiφ 0 0 0









, (106)

with φ ∈ [0, 2π).

• The Temperley–Lieb projector̃E has the form

Ẽ =
1

2









0 0 0 0
0 1 ǫ 0
0 ǫ 1 0
0 0 0 0









, (107)

whereǫ = 1 for Ẽ = |ψ(10)〉〈ψ(10)| and ǫ = −1 for Ẽ = |ψ(11)〉〈ψ(11)|, and the
corresponding Yang–Baxter gateU has the form

U =









i sinφ 0 0 cosφ
0 ± cosφ −iǫ sinφ 0
0 −iǫ sinφ ± cosφ 0

cosφ 0 0 i sinφ









, (108)
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or

U =









eiφ 0 0 0
0 0 ǫe−iφ 0
0 ǫe−iφ 0 0
0 0 0 eiφ









, (109)

with φ ∈ [0, 2π).

In the viewpoint of the extended Temperley–Lieb diagrammatical approach [21], Theorem 2
can be easily generalized. We consider the general case for the construction of the representation
of the tangle relations (4) in which a two-qubit projective measurement operator̃E and a two-qubit
gateG are involved, namely that the Temperley–Lieb projectorẼ and the Yang–Baxter gateG are
not supposed.

Theorem 3. A two-qubit projector measurement operatorẼ = |ΨUmn
〉〈ΨUmn

| and a two-qubit
quantum gateG given by

G =

1
∑

i,j,k,l=0

G̃ij,kl|ΨUij
〉〈ΨUkl

| (110)

with 16 entries of complex numbers̃Gij,kl form the representation of the tangle relations (4) when
the constraint relations

1

2

1
∑

k1,l1=0

1
∑

i2,j2,k2,l2=0

G̃i1j1,k1l1G̃i2j2,k2l2U
†
mnUi2j2U

∗
k1l1U

T
mnU

†
k2l2

Umn = U∗
i1j1

UT
mn; (111)

1

2

1
∑

k1,l1=0

1
∑

i2,j2,k2,l2=0

G̃i1j1,k1l1G̃i2j2,k2l2U
∗
mnU

T
i2j2U

†
k1l1

UmnU
∗
k2l2U

T
mn = U †

i1j1
Umn; (112)

1

2

1
∑

k1,l1=0

1
∑

i2,j2,k2,l2=0

G̃i1j1,k1l1G̃i2j2,k2l2U
†
mnUi2j2U

∗
mnU

T
k1l1U

†
k2l2

Umn = U∗
mnU

T
i1j1 ; (113)

1

2

1
∑

k1,l1=0

1
∑

i2,j2,k2,l2=0

G̃i1j1,k1l1G̃i2j2,k2l2U
∗
mnU

T
i2j2U

†
mnUk1l1U

∗
k2l2U

T
mn = U †

mnUi1j1 , (114)

are satisfied.

The proof for Theorem 3 is a direct generalization of the proof for Theorem 2, and so it is
omitted here. About how to solve these constraint relationsto obtain an interesting representation
of the tangle relations (4) is a challenge problem in future research, because the result may be
not a representation of the BMW algebra but indeed has an interesting interpretation of quantum
teleportation. In addition, the constraint relations (92)-(95) and the constraint relations (111)-(114)
can be reformulated with the new conventions and notations,refer to Appendix D.

8 Concluding remarks

In this paper, we describe quantum teleportation protocol [3, 4, 5, 6] and teleportation-based quan-
tum computation [24, 25] using the generators of the BMW algebra including both the Yang–Baxter
gate and the Temperley–Lieb projector. We point out that thetangle relations defining the BMW
algebra have a close connection with the teleportation process, and thus the extended Temperley–
Lieb diagrammatical approach [20, 21] properly characterizes the topological feature of quantum
teleportation. We propose a meaningful approach of constructing a general representation of the
tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra.

20



Notes Added. After this paper is done, we are occasionally informed thatthe Yang–Baxter
gates (105) and (108) have been already presented in the preprint [34]. As a matter of fact, these
gates are derived in two essentially different approaches.We derive such the Yang–Baxter gates
in the extended Temperley–Lieb diagrammatical approach [20, 21], whereas the authors of [34]
obtain them via the algebraic approach of the cyclic group. We study and look for interesting
representations of the BMW algebra, which are not involved in [34].
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A The Brauer algebra and quantum teleportation

It is well-known that the BMW algebra [16] is the algebraic deformation of the Brauer algebra
[26]. Quantum teleportation using the Brauer algebra has been explored in [20], which originally
motivated the authors to study quantum teleportation usingthe BMW algebra and write down the
present paper. Here we make a simple sketch on the Brauer algebra and its relation to quantum
teleportation.

The Brauer algebraDn(d) [26] with the loop parameterd is generated by the Temperley–Lieb
idempotentsei and the permutationsvi with i = 1, . . . , n − 1. The Temperley–Lieb idempotents
ei satisfy the algebraic relations,

e2i = ei eiei±1ei = d−2ei,
eiej = ejei |i− j| ≥ 2,

(115)

and the permutation generatorsvi satisfy

v2i = 11, vivi±1vi = vi±1vivi±1. (116)

Both generators satisfy the first type of the mixed relations,

eivi = viei = ei, (117)

and the second type of the mixed relations,

vi±1viei±1 = eivi±1vi = deiei±1, (118)

which are called the tangle relations of the Brauer algebra in this paper.
A tensor product representation of the Brauer algebra can beconstructed in terms of the Bell

state projector|Ψ〉〈Ψ| (11) and the permutation gateP defined byP |ij〉 = |ji〉 as follows

ei = 11⊗(i−1) ⊗ |Ψ〉〈Ψ| ⊗ 11⊗(n−i−1), (119)

vi = 11⊗(i−1) ⊗ P ⊗ 11⊗(n−i−1), (120)

with the loop parameterd = 2. Using the Bell state projector|Ψ〉〈Ψ|, we perform the teleportation
process in the way

(|Ψ〉〈Ψ| ⊗ 112)(|α〉 ⊗ |Ψ〉) = 1

2
|Ψ〉 ⊗ |α〉, (121)

which is a special case of (26) fori = j = 0. In terms of the permutation gateP , we define the
teleportation operator as(112 ⊗ P )(P ⊗ 112) to swap the quantum state in the way

(112 ⊗ P )(P ⊗ 112)(|α〉 ⊗ |ij〉) = |ij〉 ⊗ |α〉. (122)
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With the configuration (21) of the Bell state projector|Ψ〉〈Ψ| and the extended Temperley–Lieb
configuration of the permutation gateP ,

P =
∑1

i,j=0(−1)i·j
rWij

rW
†
ij

, (123)

we reformulate the tangle relations (118) of the Brauer algebra as

(P ⊗ 112)(112 ⊗ P ) (|Ψ〉 ⊗ |α〉) = 2(112 ⊗ |Ψ〉〈Ψ|) (|Ψ〉 ⊗ |α〉) (124)

which can be reduced into the teleportation equation (27), refer to the proof for Corollary 1.
When the permutation gateP is replaced with the Yang–Baxter gateB (9), the above repre-

sentation of the Brauer algebra is substituted by the representation of the BMW algebra, so the
study of quantum teleportation using the Brauer algebra in [20] naturally points towards the study
of quantum teleportation using the BMW algebra in this paper.

B More on the extended Temperley–Lieb configurations of the
Yang–Baxter gateB (9)

It is obvious that the extended Temperley–Lieb configurations [20, 21] play the essential roles
throughout this paper. In accordance with the reference [21], a Yang–Baxter gate allows various
but equivalent extended Temperley–Lieb configurations. For example, three distinct configura-
tions of the Yang–Baxter gateB (9) are presented in Subsection 4.2. Here another two extended
Temperley–Lieb configurations of the Yang–Baxter gateB are introduced and they may be useful
elsewhere.

The Yang–Baxter gateB (9) can be related to the Temperley–Lieb projectorE (8) in the way

B = Ũ + 2iei
3

4
πE, (125)

whereŨ is a unitary matrix with the decomposition

Ũ = ei
3

4
π114 +

√
2
(

|ψ(10)〉〈ψ(10)|+ |ΨR2φ
〉〈ΨR2φ

|
)

, (126)

with |ψ(10)〉 = (112 ⊗ X)|Ψ〉 and|ΨR2φ
〉 = (112 ⊗ R2φ)|Ψ〉, R2φ denoting the phase shift gate

(16), and the associated extended Temperley–Lieb configuration is illustrated in

B

❅
❅
❅��

�� = ei
3

4
π +

√
2

rX

rX

+
√
2

rR
2φ

rR
†
2φ

+2iei
3

4
π

rM00

rM
†
00

(127)

where the two vertical lines represent for the identity matrix 114.
Note that the single-qubit gateM00 is defined asM00 = RφHSHRφ (18). And bring such

decomposition of theM00 gate into the relation (125). After some algebra, the Yang–Baxter gate
B takes another form

B = ei
3

4
π
(

114 − |ψ(10)〉〈ψ(10)| − |ΨR2φ
〉〈ΨR2φ

| − e−iφ|ΨR2φ
〉〈ψ(10)|+ eiφ|ψ(10)〉〈ΨR2φ

|
)

,
(128)
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and its extended Temperley–Lieb configuration is shown below

B

❅
❅
❅��

�� = ei
3

4
π( −

rX

rX

−
rR

2φ

rR
†
2φ

−e−iφ

rR
2φ

rX

+eiφ
rX

rR
†
2φ

) (129)

which together with (127) point out the fact that no transparent topological deformations exist
between such two configurations, although they are algebraically equivalent.

C How to solve the constraint relation (92)

For example, we make a sketch on how to derive the representation of the BMW algebra, such as
(104) and (105) or (106) from the constraint relation (92). Set the unitary basesUij asUij = X iZj

and the unitary base matrixUmn asUmn = 112. Then the constraint relation (92) has the form

1

2

1
∑

k,l=0

µijµklX
kZ lX iZjZ lXk = X iZj, (130)

which can be reformulated as

1

2

1
∑

k,l=0

µijµkl(−1)i·l(−1)k·jX iZj = X iZj . (131)

Since the unitary basesUij satisfy the orthonormal relation (90), we have the constraint equation
of the eigenvaluesµij of the Yang–Baxter gateU (91),

1
∑

k,l=0

µijµkl(−1)i·l(−1)k·j = 2, (132)

which represent a set of equations given by

µ00 (µ00 + µ01 + µ10 + µ11) = 2; (133)

µ01 (µ00 + µ01 − µ10 − µ11) = 2; (134)

µ10 (µ00 − µ01 + µ10 − µ11) = 2; (135)

µ11 (µ00 − µ01 − µ10 + µ11) = 2. (136)

Solving the above equations, we have three classes of solutions for the eigenvaluesµij as below.

• Class 1:µ00 = eiφ, µ01 = e−iφ, µ10 = e−iφ, µ11 = −eiφ, which determine the Yang–
Baxter gateU (91) as

U =

1
∑

i,j=0

µij |ψ(ij)〉〈ψ(ij)| =









cosφ 0 0 i sinφ
0 −i sinφ cosφ 0
0 cosφ −i sinφ 0

i sinφ 0 0 cosφ









. (137)

• Class 2:µ00 = eiφ, µ01 = e−iφ, µ10 = −eiφ, µ11 = e−iφ, which determine the Yang–
Baxter gateU (91) as

U =

1
∑

i,j=0

µij |ψ(ij)〉〈ψ(ij)| =









cosφ 0 0 i sinφ
0 −i sinφ − cosφ 0
0 − cosφ −i sinφ 0

i sinφ 0 0 cosφ









. (138)
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• Class 3:µ00 = eiφ, µ01 = −eiφ, µ10 = e−iφ, µ11 = e−iφ, which determine the Yang–
Baxter gateU (91) as

U =

1
∑

i,j=0

µij |ψ(ij)〉〈ψ(ij)| =









0 0 0 eiφ

0 e−iφ 0 0
0 0 e−iφ 0
eiφ 0 0 0









. (139)

Similarly, when the unitary basesUmn are the Pauli gatesX ,Z andXZ, respectively, the other
solutions of the Yang–Baxter gateU (91) can be obtained. The collection of all the solutions has
been presented in (104) and (105) or (106), or (107) and (108)or (109).

D Reformulation of the constraint relations (92)-(95) and (111)-
(114)

Both the constraint relations (92)-(95) and the constraintrelations (111)-(114) looking complicated,
we introduce the new conventions to simplify their formulations. We define the skew-transpose on
the product of two matrices as

(BC)ST ≡ BT CT , (140)

where the skew-transpositionST does not interchangeBT andCT as the ordinary transpose does.
With the new notations given by

ηijkl ≡
1

2
µijµkl; Oαβ ≡ U †

mnUαβ, (141)

with specified indicesm andn, the constraint relations (92)-(95) have the simplified forms

1
∑

k,l=0

ηijklOklO
ST
ij

†
O†

kl = OST
ij

†
; (142)

1
∑

k,l=0

ηijklO
ST
kl O

†
ijO

ST
kl

†
= O†

ij ; (143)

1
∑

k,l=0

ηijklOklO
ST
ij O†

kl = OST
ij ; (144)

1
∑

k,l=0

ηijklO
ST
kl OijO

ST
kl

†
= Oij , (145)

where the skew-transposeST is commutative with the Hermitian conjugation†. As a remark, the
notationOαβ is introduced to remove the indicesm andn so that the algebraic structure of the
constraint relations (92)-(95) is presented in a more transparent way. Furthermore, with the new
notation

ηi1j1i2j2k1l1k2l2 ≡ 1

2
Gi1j1,k1l1G̃i2j2,k2l2 , (146)
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the constraint relations (111)-(114) have more simplified forms

1
∑

k,l=0

ηi1j1i2j2k1l1k2l2Oi2j2O
ST
k1l1

†
O†

k2l2
= OST

i1j1

†
; (147)

1
∑

k,l=0

ηi1j1i2j2k1l1k2l2O
ST
i2j2O

†
k1l1

OST
k2l2

†
= O†

i1j1
; (148)

1
∑

k,l=0

ηi1j1i2j2k1l1k2l2Oi2j2O
ST
k1l1O

†
k2l2

= OST
i1j1 ; (149)

1
∑

k,l=0

ηi1j1i2j2k1l1k2l2O
ST
i2j2Ok1l1O

ST
k2l2

†
= Oi1j1 . (150)

As a concluding remark, we hope that such the above reformulations of the constraint relations
(92)-(95) and (111)-(114) are meaningful and useful elsewhere.
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