Skip to main content
Log in

Comment on “flexible protocol for quantum private query based on B92 protocol”

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a recent paper (Quantum Inf Process 13:805–813, 2014), a flexible quantum private query (QPQ) protocol based on B92 protocol is presented. Here we point out that the B92-based QPQ protocol is insecure in database security when the channel has loss, that is, the user (Alice) will know more records in Bob’s database compared with she has bought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Xia, Z.H., Wang, X.H., Zhang, L.G., et al.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. 11(11), 2594–2608 (2016). doi:10.1109/TIFS.2016.2590944

    Article  Google Scholar 

  2. Fu, Z.J., Wu, X.L., Guan, C.W., et al.: Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans. Inf. Forensics Secur. 11(12), 2706–2716 (2016). doi:10.1109/TIFS.2016.2596138

    Article  Google Scholar 

  3. Fu, Z.J., Sun, X.M., Liu, Q., et al.: Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun. E98–B(1), 190–200 (2015)

    Article  ADS  Google Scholar 

  4. Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A. 83, 022301 (2011)

    Article  ADS  Google Scholar 

  5. Gao, F., Liu, B., Wen, Q.Y.: Flexible quantum private queries based on quantum key distribution. Opt. Exp. 20, 17411–17420 (2012)

    Article  ADS  Google Scholar 

  6. Yang, Y.-G., Sun, S.J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)

    Article  MathSciNet  Google Scholar 

  7. Zhang, J.-L., Guo, F.-Z., Gao, F., Liu, B., Wen, Q.-Y.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A. 88, 022334 (2013)

    Article  ADS  Google Scholar 

  8. Chan, P., Itzel, L.-M., Mo, X.-F., Simon, C., Tittel, W.-G.: Performing private database queries in a real-world environment using a quantum protocol. Sci. Rep. 4, 5233 (2014)

    ADS  Google Scholar 

  9. Wei, C.-Y., Gao, F., Wen, Q.-Y., Wang, T.-Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)

    Article  ADS  Google Scholar 

  10. Yang, Y.-G., Sun, S.-J., Tian, J., Xu, P.: Secure quantum private query with real-time security. Optik 125, 5538–5541 (2014)

    Article  ADS  Google Scholar 

  11. Lai, H., Mehmet, A.-O., Pieprzyk, J., Jing, H.-X., Li, Y.-X., Zhong, T.-J.: Controllable quantum private queries using an entangled Fibonacci-sequence spiral source. Phys. Lett. A. 379, 2561–2568 (2015)

    Article  ADS  Google Scholar 

  12. Yu, F., Qiu, D.-W., Situ, H.-Z., Wang, X.-M., Long, S.: Enhancing user privacy in SARG04-based private. Quantum Inf. Process. 14, 4201–4210 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Yang, Y.-G., Zhang, M.-O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14, 1017–1024 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58(10), 100301 (2015)

    Article  Google Scholar 

  15. Sun, S.-J., Yang, Y.-G., Zhang, M.-O.: Relativistic quantum private database queries. Quantum Inf. Process. 14, 1443–1450 (2015)

    Article  ADS  MATH  Google Scholar 

  16. Wei, C.-Y., Wang, T.-Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)

    Article  ADS  Google Scholar 

  17. Raynal, P.: Unambiguous State Discrimination of two density matrices in Quantum Information Theory. arXiv: quant-ph/0611133 (2006)

  18. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant Nos. 61402058, 61572086), the Fund for Middle and Young Academic Leaders of CUIT (Grant No. J201511), the Science and Technology Support Project of Sichuan Province of China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province of China (Grant No. 12ZB017) and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions (Grant No. szjj2014-074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Zhang, SB. & Zhu, JM. Comment on “flexible protocol for quantum private query based on B92 protocol”. Quantum Inf Process 16, 86 (2017). https://doi.org/10.1007/s11128-017-1518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1518-x

Keywords

Navigation