Skip to main content
Log in

Nearly deterministic Bell measurement using quantum communication bus

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a scheme to implement Bell states measurement for an arbitrary number of photons by using robust continuous variable coherent modes, called as quantum communication bus (qubus) and weak cross-Kerr nonlinearities. Remarkably, the success probability of our scheme is close to unity, and our scheme does not require any ancillary resource entanglement. Our scheme is likely to yield versatile applications for quantum computation and quantum teleportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barenco, A., Dutch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Cre’peau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature (London) 390, 575 (1997)

    Article  ADS  Google Scholar 

  4. Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)

    Article  ADS  Google Scholar 

  5. Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)

    Article  ADS  Google Scholar 

  6. Kieling, K., Rudolph, T., Eisert, J.: Percolation, renormalization, and quantum computing with nondeterministic gates. Phys. Rev. Lett. 99, 130501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Kieling, K., Eisert, J.: Quantum and Semi-Classical Percolation and Breakdown in Disordered Solids. Lecture Notes in Physics, vol. 762, pp. 287–319. Springer, Berlin (2008)

    MATH  Google Scholar 

  8. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  9. Ralph, T.C., Pryde, G.J.: Chapter 4—optical quantum computation. Prog. Opt. 54, 209 (2010)

    Article  Google Scholar 

  10. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)

    Article  ADS  MATH  Google Scholar 

  11. Lütkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Calsamiglia, J., Lütkenhaus, N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67 (2001)

    Article  ADS  Google Scholar 

  13. Grice, W.P.: Arbitrarily complete Bell-state measurement using only linear optical elements. Phys. Rev. A 84, 042331 (2011)

    Article  ADS  Google Scholar 

  14. Ewert, F., van Loock, P.: Efficient Bell measurement with passive linear optics and unentangled Ancillae. Phys. Rev. Lett. 113, 140403 (2014)

    Article  ADS  Google Scholar 

  15. Zaidi, H.A., van Loock, P.: Beating the one-half limit of Ancilla-free linear optics Bell measurements. Phys. Rev. Lett. 110, 260501 (2013)

    Article  ADS  Google Scholar 

  16. Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)

    Article  ADS  Google Scholar 

  17. Jeong, H., Kim, M.S.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002)

    Article  ADS  Google Scholar 

  18. Lee, S.W., Jeong, H.: Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326 (2013)

    Article  ADS  Google Scholar 

  19. Lee, S.W., Jeong, H.: In: Proceedings of the First International Workshop on Entangled Coherent States and Its Application to Quantum Information Science, pp. 41–46. Tamagawa University, Tokyo (2012)

  20. Seung, W.L., Kimin, P., Timothy, C.R., Hyunseok, J.: Nearly deterministic Bell measurement with multiphoton entanglement for efficient quantum-information processing. Phys. Rev. A 92, 052324 (2015)

    Article  Google Scholar 

  21. Seung, W.L., Kimin, P., Timothy, C.R., Hyunseok, J.: Nearly deterministic Bell measurement for multiphoton qubits and its application to quantum information processing. Phys. Rev. Lett. 114, 113603 (2015)

    Article  Google Scholar 

  22. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (R) (2005)

  23. Zhou, J., Yang, M., Lu, Y., Cao, Z.L.: Nearly deterministic teleportation of a photonic qubit with weak cross-Kerr nonlinearities. Chin. Phys. Lett. 26(10), 100301 (2009)

    Article  ADS  Google Scholar 

  24. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  25. Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)

    Article  ADS  Google Scholar 

  26. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  27. He, B., Nadeem, M., Bergou, J.A.A.: Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity. Phys. Rev. A 79, 035802 (2009)

    Article  ADS  Google Scholar 

  28. Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985)

    Article  ADS  Google Scholar 

  29. Louis, S.G.R., Nemoto, K., Munro, W.J., Spiller, T.P.: The efficiencies of generating cluster states with weak nonlinearities. New J. Phys. 9, 193 (2007)

    Article  ADS  Google Scholar 

  30. Zhao, C.R., Ye, L.: Robust scheme for the preparation of symmetric Dicke states with coherence state via cross-Kerr nonlinearity. Opt. Commun. 284, 541–544 (2011)

    Article  ADS  Google Scholar 

  31. Li, X.Y., Voss, P.L., Sharping, J.E., Kumar, P.: Optical-Fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005)

    Article  ADS  Google Scholar 

  32. Munro, W.J., Nemoto, K., Beausoleil, R.G., Spiller, T.P.: High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71, 033819 (2005)

    Article  ADS  Google Scholar 

  33. Harris, S.E., Hau, L.V.: Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611 (1999)

    Article  ADS  Google Scholar 

  34. Braje, D.A., Balić, V., Yin, G.Y., Harris, S.E.: Low-light-level nonlinear optics with slow light. Phys. Rev. A 68, 041801 (R) (2003)

  35. Metz, J., Trupke, M., Beige, A.: Robust entanglement through macroscopic quantum jumps. Phys. Rev. Lett. 97, 040503 (2006)

    Article  ADS  MATH  Google Scholar 

  36. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Bachor, H., Ralph, T.C.: A Guide to Experiments in Quantum Optics. Wiley, Weinheim (2004)

    Book  Google Scholar 

  38. Zhu, M.Z., Yin, X.G.: Highly efficient optical Fredkin gate with weak nonlinearities and classical information feed-forward. J. Opt. Soc. Am. B 30, 355–361 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant Nos. 11575001, 61275119 and 61601002, Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139) and also by the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2013A205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JM., Zhu, Mz., Wang, D. et al. Nearly deterministic Bell measurement using quantum communication bus. Quantum Inf Process 16, 63 (2017). https://doi.org/10.1007/s11128-017-1522-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1522-1

Keywords

Navigation