Skip to main content
Log in

Quantum criticality from Fisher information

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum phase transition is primarily characterized by a qualitative sudden change in the ground state of a quantum system when an external or internal parameter of the Hamiltonian is continuously varied. Investigating quantum criticality using information-theoretic methods has generated fruitful results. Quantum correlations and fidelity have been exploited to characterize the quantum critical phenomena. In this work, we employ quantum Fisher information to study quantum criticality. The singular or extremal point of the quantum Fisher information is adopted as the estimated thermal critical point. By a significant model constructed in Quan et al. (Phys Rev Lett 96: 140604, 2006), the effectiveness of this method is illustrated explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Shankar, R.: Renormalization-group approach to interacting Fermions. Rev. Mod. Phys. 66, 129 (1994)

    Article  ADS  Google Scholar 

  3. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  4. Yuan, Z.-G., Zhang, P., Li, S.-S.: Disentanglement of two qubits coupled to an XY spin chain: role of quantum phase transition. Phys. Rev. A 76, 042118 (2007)

    Article  ADS  Google Scholar 

  5. Liu, B.-Q., Shao, B., Zou, J.: Quantum discord for a central two-qubit system coupled to an XY-spin-chain environment. Phys. Rev. A 82, 062119 (2010)

    Article  ADS  Google Scholar 

  6. Qiu, L., Tang, G., Han, K., Yang, X.Q., Wu, Y.X., Ye, B.: Quantum discord for a central two-qubit system coupled to an XY spin chain with multipartite interaction. Physica E 46, 218–223 (2012)

    Article  ADS  Google Scholar 

  7. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wu, L.-A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. Altintas, F., Eryigit, R.: Correlations and nonlocality measures as indicators of quantum phase transitions in several critical systems. Ann. Phys. 327, 3084 (2012)

    Article  ADS  MATH  Google Scholar 

  10. Gu, S.-J., Sun, C.-P., Lin, H.-Q.: Universal role of correlation entropy in critical phenomena. J. Phys. A 41, 025002 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  12. Werlang, T., Ribeiro, G.A.P., Rigolin, G.: Spotlighting quantum critical points via quantum correlations at finite temperatures. Phys. Rev. A 83, 062334 (2011)

    Article  ADS  Google Scholar 

  13. Li, Y.C., Lin, H.Q.: Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction. Phys. Rev. A 83, 052323 (2011)

    Article  ADS  Google Scholar 

  14. Çakmak, B., Karpat, G., Gedik, Z.: Critical point estimation and long-range behavior in the one-dimensional XY model using thermal quantum and total correlations. Phys. Lett. A 376, 2982 (2012)

    Article  ADS  Google Scholar 

  15. Maziero, J., Céleri, L.C., Serra, R.M., Sarandy, M.S.: Long-range quantum discord in critical spin systems. Phys. Lett. A 376, 1540 (2012)

    Article  ADS  MATH  Google Scholar 

  16. Campbell, S., Richens, J., Gullo, N.L., Busch, T.: Criticality, factorization, and long-range correlations in the anisotropic XY model. Phys. Rev. A 88, 062305 (2013)

    Article  ADS  Google Scholar 

  17. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  18. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  20. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  21. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  22. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  23. Maziero, J., Guzman, H.C., Céleri, L.C., Sarandy, M.S., Serra, R.M.: Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A 82, 012106 (2010)

    Article  ADS  Google Scholar 

  24. Quan, H.T., Song, Z., Liu, X.F., Zanardi, P., Sun, C.P.: Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 96, 140604 (2006)

    Article  ADS  Google Scholar 

  25. Zanardi, P., Quan, H.T., Wang, X., Sun, C.P.: Mixed-state fidelity and quantum criticality at finite temperature. Phys. Rev. A 75, 032109 (2007)

    Article  ADS  Google Scholar 

  26. Lu, X.-M., Sun, Z., Wang, X., Zanardi, P.: Operator fidelity susceptibility, decoherence, quantum criticality. Phys. Rev. A 78, 032309 (2008)

    Article  ADS  Google Scholar 

  27. Kwok, H.-M., Ning, W.-Q., Gu, S.-J., Lin, H.-Q.: Quantum criticality of the Lipkin-Meshkov-Glick model in terms of fidelity susceptibility. Phys. Rev. E 78, 032103 (2008)

    Article  ADS  Google Scholar 

  28. Gu, S.-J.: Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B 24, 4371 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Yuen, H.P., Lax, M.: Multi-parameter quantum estimation and measurement of nonselfadjoint observables. IEEE Trans. Inf. Theory 19, 740 (1973)

    Article  MATH  Google Scholar 

  30. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  31. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland Publishing Company, Amsterdam (1982)

    MATH  Google Scholar 

  32. Wootters, W.K.: Statistical distance and Hilbert space. Phys. Rev. D 23, 357 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  33. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Fujiwara, A., Nagaoka, H.: Quantum Fisher metric and estimation for pure state models. Phys. Lett. A 201, 119 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Petz, D.: Monotone metrics on matrix spaces. Linear Algebra Appl. 244, 81 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Barndorff-Nielsen, O.E., Gill, R.D.: Fisher information in quantum statistics. J. Phys. A 33, 4481 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Luo, S.: Wigner-Yanase skew information vs. quantum Fisher information. Proc. Am. Math. Soc. 132, 885 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Paris, M.G.A., Řeháček, J.: Quantum State Estimation. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  39. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  40. Paris, M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inform. 7, 125 (2009)

    Article  MATH  Google Scholar 

  41. Chen, P., Luo, S.: Clocks and Fisher information. Theor. Math. Phys. 165, 1552 (2010)

    Article  MATH  Google Scholar 

  42. Genoni, M.G., Olivares, S., Paris, M.G.A.: Optical phase estimation in the presence of phase diffusion. Phys. Rev. Lett. 106, 153603 (2011)

    Article  ADS  Google Scholar 

  43. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)

    Article  ADS  Google Scholar 

  44. Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406 (2011)

    Article  Google Scholar 

  45. Lu, X.-M., Luo, S., Oh, C.H.: Hierarchy of measurement-induced Fisher information for composite states. Phys. Rev. A 86, 022342 (2012)

    Article  ADS  Google Scholar 

  46. Bera, M.N.: Quantum Fisher information as the measure of Gaussian quantum correlation: Role in quantum metrology. arXiv:1406.5144 (2014)

  47. Strobel, H., Muessel, W., Linnemann, D., Zibold, T., Hume, D.B., Pezzè, L., Smerzi, A., Oberthaler, M.K.: Fisher information and entanglement of non-Gaussian spin states. Science 345(6195), 424–427 (2014)

    Article  ADS  Google Scholar 

  48. Hyllus, P., Pezzè, L., Smerzi, A.: Entanglement and sensitivity in precision measurements with states of a fluctuating number of particles. Phys. Rev. Lett. 105, 120501 (2010)

    Article  ADS  Google Scholar 

  49. Hyllus, P., Laskowski, W., Krsichek, R., Schwemmer, C., Wieczork, W., Weinfurter, H., Pezzè, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  50. Ma, J., Wang, X.: Fisher information and spin squeezing in the Lipkin–Meshkov–Glick model. Phys. Rev. A 80, 012318 (2009)

    Article  ADS  Google Scholar 

  51. Sun, Z., Ma, J., Lu, X.-M., Wang, X.: Fisher information in a quantum-critical environment. Phys. Rev. A 82, 022306 (2010)

    Article  ADS  Google Scholar 

  52. Wang, T.-L., Wu, L.-N., Yang, W., Jin, G.-R., Lambert, N., Nori, F.: Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16, 063039 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  53. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  54. Bures, D.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite w*-algebras. Trans. Am. Math. Soc. 135, 199 (1969)

    MathSciNet  MATH  Google Scholar 

  55. Uhlmann, A.: The transition probability in the state space of a *-algebra. Rep. Math. Phys. 9, 273 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Song, H., Luo, S., Hong, Y.: Quantum non-Markovianity based on the Fisher-information matrix. Phys. Rev. A 91, 042110 (2015)

    Article  ADS  Google Scholar 

  57. Hong, Y., Luo, S., Song, H.: Detecting k-nonseparability via quantum Fisher information. Phys. Rev. A 91, 042313 (2015)

    Article  ADS  Google Scholar 

  58. Lu, X.-M., Yu, S., Oh, C.H.: Robust quantum metrological schemes based on protection of quantum Fisher information. Nat. Commun. 6, 7282 (2015)

    Article  ADS  Google Scholar 

  59. Hepp, K.: Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta 45, 237 (1972)

    Google Scholar 

  60. Bell, J.S.: On wave packet reduction in the coleman–Hepp model. Helv. Phys. Acta 48, 93 (1975)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangshuang Fu.

Additional information

This work was supported by the National Natural Science Foundation of China, Grants No.11375259, No.11605284, and No.61134008, the National Center for Mathematics and Interdisciplinary Sciences, CAS, Grant No. Y029152K51, and the Fundamental Research Funds for the Central Universities, FRF-TP-16-010A1.

Appendix

Appendix

Here, we present detailed derivation of Eq. (2). For the state \(\rho _S(t)\) in Eq. (1), the explicit expression of the symmetric logarithmic derivatives \(L_\lambda \) determined by

$$\begin{aligned} \partial _\lambda \rho _S(t)=\frac{1}{2} \bigl (\rho _S(t)L_{\lambda }+L_{\lambda }\rho _S(t) \bigr ) \end{aligned}$$

is given by

$$\begin{aligned} L_\lambda =\frac{1}{|f(\lambda )|^2-1}\left( \begin{array}{cc} |c_e|^2m(\lambda ) &{} \ \ c_gc_e^*n(\lambda )\\ c_g^*c_en^*(\lambda ) &{} \ \ |c_g|^2m(\lambda )\\ \end{array} \right) \end{aligned}$$

with

$$\begin{aligned} f(\lambda )= & {} \langle \varphi _e(t)|\varphi _g(t)\rangle ,\\ m(\lambda )= & {} f(\lambda )\dot{f}^*(\lambda )+f^*(\lambda )\dot{f}(\lambda ),\\ n(\lambda )= & {} 2\dot{f}(\lambda )(|f(\lambda )|^2-1)-m(\lambda )f(\lambda ). \end{aligned}$$

The quantum Fisher information \(F_\lambda (t)\) can be evaluated as

$$\begin{aligned} F_\lambda (t)=\mathrm{tr}\rho _S(t) L_\lambda ^2=|c_g|^2|c_e|^2\biggl (4|\dot{f}(\lambda )|^2-\frac{\dot{L}(\lambda )^2}{L(\lambda )-1}\biggr ), \end{aligned}$$

where \(L(\lambda )=|f(\lambda )|^2\). It remains to evaluate explicitly \(f(\lambda ),\) which is the main difficult task.

Following the method in Ref. [24], the Hamiltonian \(H(\lambda ,\delta )\) can be rewritten in a diagonal form as

$$\begin{aligned} H(\lambda ,\delta )=\sum _k\varepsilon _e^k(A_k^\dagger A_k-\mathbf {1}/2) \end{aligned}$$

with \(\varepsilon _e^k=2J\sqrt{1+(\lambda +\delta )^2-2(\lambda +\delta )\cos (ka)}\) being the single quasiexcitation energy and

$$\begin{aligned} \begin{aligned} A_k=\sum _l\frac{\mathrm {e}^{-i{kal}}}{\sqrt{N}}\prod _{s<l}\sigma _s^x(u_e^k\sigma _l^{[+]}-iv_e^k\sigma _l^{[-]}) \end{aligned} \end{aligned}$$

being the normal mode operators which satisfy the canonical Fermion anticommunication relations. Here, \(u_e^k=\cos (\theta _e^k/2)\) and \(v_e^k=\sin (\theta _e^k/2)\) with

$$\begin{aligned} \theta _e^k=\arctan \frac{\sin (ka)}{\lambda +\delta -\cos (ka)}. \end{aligned}$$

The operator \(\sigma _l^{[\pm ]}=(-\sigma _l^z\pm i\sigma _l^y)/2\) is defined by the Pauli matrices acting on the lth site of the spin chain.

Similarly (or by putting \(\delta =0\)), the Hamiltonian \(H(\lambda ,0)\) can be diagonalized as

$$\begin{aligned} H(\lambda ,0)=\sum _k\varepsilon _g^k(B_k^\dagger B_k-\mathbf {1}/2) \end{aligned}$$

with \(\varepsilon _g^k=2J\sqrt{1+\lambda ^2-2\lambda \cos (ka)}\) and

$$\begin{aligned} \begin{aligned} B_k=\sum _l\frac{\mathrm {e}^{-i{kal}}}{\sqrt{N}}\prod _{s<l}\sigma _s^x(u_g^k\sigma _l^{[+]}-iv_g^k\sigma _l^{[-]}). \end{aligned} \end{aligned}$$

Here, \(u_g^k=\cos (\theta _g^k/2)\), \(v_g^k=\sin (\theta _g^k/2)\), and \(\theta _g^k=\arctan \frac{\sin (ka)}{\lambda -\cos (ka)}.\)

The Fermionic quasiexcitation operators \(B_k\) can be verified to be related with the operators \(A_k\) by the following Bogoliubov transformation

$$\begin{aligned} B_{\pm k}=\cos (\alpha _k)A_{\pm k}-i\sin (\alpha _k) A_{\mp k}^\dagger , \end{aligned}$$

where \(\alpha _k=(\theta _g^k-\theta _e^k)/2\).

Suppose the Ising spin chain in a transverse field depicted by \(H( \lambda ,0)\) is initially in the ground state \(|\varphi (0)\rangle =|G\rangle \) which can be rewritten as

$$\begin{aligned} |G\rangle =\prod _{k>0}\bigl (\cos (\alpha _k)-i\sin (\alpha _k)A_k^\dagger A_{-k}^\dagger \bigr )|E\rangle , \end{aligned}$$

where \(|E\rangle \) is the ground state of \(H(\lambda ,\delta )\), then the expression of \(f(\lambda )\) can be calculated as

$$\begin{aligned} f(\lambda )= & {} \langle \varphi _e(t)|\varphi _g(t)\rangle =\langle G|e^{iH(\lambda ,\delta )t}e^{-iH(\lambda ,0)t}|G\rangle \\= & {} e^{i\sum _k(\varepsilon _g^k-\varepsilon _e^k)t/2} \langle G|e^{i\sum _k\varepsilon _e^ktA_k^\dagger A_k}e^{-i\sum _k\varepsilon _g^ktB_k^\dagger B_k}|G\rangle . \end{aligned}$$

Since \(B_k|G\rangle =0\)\([A_k^\dagger A_k, A_j^\dagger A_j]=0\), and \((A_k^\dagger A_k)^n=A_k^\dagger A_k\) for any positive integer n, the above expression turns out to be

$$\begin{aligned} f(\lambda )= & {} \mathrm{e}^{i\sum _k(\varepsilon _g^k-\varepsilon _e^k)t/2}\langle G|\prod _k \mathrm{e}^{i\varepsilon _e^ktA_k^\dagger A_k}|G\rangle \\= & {} \mathrm{e}^{i\sum _k(\varepsilon _g^k-\varepsilon _e^k)t/2}\langle E|\prod _{m>0} \bigl (\cos (\alpha _m)-i\sin (\alpha _m) A_{-m}A_{m}\bigr )\\&\times \prod _k \mathrm{e}^{i\varepsilon _e^ktA_k^\dagger A_k}\prod _{n>0}\bigl (\cos (\alpha _n)+i\sin (\alpha _n) A_n^\dagger A_{-n}^\dagger \bigr )|E\rangle . \end{aligned}$$

By virtue of the equations

$$\begin{aligned} \prod _k\mathrm{e}^{i\varepsilon _e^ktA_k^\dagger A_k}= & {} \mathrm{e}^{i\varepsilon _e^0tA_0^\dagger A_0}\prod _{l>0}\mathrm{e}^{i\varepsilon _e^{-l}tA_{-l}^\dagger A_{-l}}e^{i\varepsilon _e^ltA_l^\dagger A_l}\\= & {} \mathrm{e}^{i\varepsilon _e^0tA_0^\dagger A_0}\prod _{l>0}\mathrm{e}^{i\varepsilon _e^{l}tA_{-l}^\dagger A_{-l}}e^{i\varepsilon _e^ltA_l^\dagger A_l}, \end{aligned}$$

where we have used \(\varepsilon _e^{-l}=\varepsilon _e^{l}\) in the second equality,

$$\begin{aligned} \mathrm{e}^{i\varepsilon _e^ktA_k^\dagger A_k}=\mathbf {1}+(\mathrm{e}^{i\varepsilon _e^kt}-1)A_k^\dagger A_k, \end{aligned}$$

and for all \(m>l\ge 0\),

$$\begin{aligned}&[\cos (\alpha _m)-i\sin (\alpha _m) A_{-m}A_{m},A_{-l}^\dagger A_{-l}]=0,\\&[A_l^\dagger A_l,\cos (\alpha _m)+i\sin (\alpha _m) A_{m}^\dagger A_{-m}^\dagger ]=0,\\&[\cos (\alpha _m)-i\sin (\alpha _m) A_{-m}A_{m},\cos (\alpha _l)+i\sin (\alpha _l) A_{l}^\dagger A_{-l}^\dagger ]=0, \end{aligned}$$

the expression can be further simplified as

$$\begin{aligned} f(\lambda )= & {} \langle \varphi _e(t)|\varphi _g(t)\rangle \\= & {} \mathrm{e}^{i\sum _k(\varepsilon _g^k-\varepsilon _e^k)t/2}\langle E|\mathrm{e}^{i\varepsilon _e^0tA_0^\dagger A_0}\prod _{k>0}\bigl (\cos (\alpha _k)-i\sin (\alpha _k )A_{-k}A_{k}\bigr )\\&\times \mathrm{e}^{i\varepsilon _e^{k}tA_{-k}^\dagger A_{-k}} \mathrm{e}^{i\varepsilon _e^ktA_k^\dagger A_k}\bigl (\cos (\alpha _k)+i\sin (\alpha _k) A_k^\dagger A_{-k}^\dagger \bigr )|E\rangle . \end{aligned}$$

Finally, using

$$\begin{aligned}&\mathrm{e}^{i\varepsilon _e^{k}tA_{-k}^\dagger A_{-k}}\mathrm{e}^{i\varepsilon _e^ktA_k^\dagger A_k}A_k^\dagger A_{-k}^\dagger \\&\quad =\mathrm{e}^{i\varepsilon _e^ktA_{-k}^\dagger A_{-k}}(\mathbf {1}+(\mathrm{e}^{i\varepsilon _e^kt}-1)A_k^\dagger A_k)A_k^\dagger A_{-k}^\dagger \\&\quad =\mathrm{e}^{i\varepsilon _e^ktA_{-k}^\dagger A_{-k}}\mathrm{e}^{i\varepsilon _e^kt}A_k^\dagger A_{-k}^\dagger \nonumber \\&\quad =\mathrm{e}^{i\varepsilon _e^kt}(\mathbf {1}+(\mathrm{e}^{i\varepsilon _e^kt}-1)A_{-k}^\dagger A_{-k})A_k^\dagger A_{-k}^\dagger \\&\quad =\mathrm{e}^{2i\varepsilon _e^kt}A_k^\dagger A_{-k}^\dagger , \end{aligned}$$

and \(A_k|E\rangle =0\) for all k, we get

$$\begin{aligned} f(\lambda )=\mathrm{e}^{i\sum _k(\varepsilon _g^k-\varepsilon _e^k)t/2}\prod _{k>0}\bigl (\cos ^2(\alpha _k)+\sin ^2(\alpha _k) \mathrm{e}^{2i\varepsilon _e^kt}\bigr ). \end{aligned}$$

Furthermore, it is worth mentioning that the explicit expression of Loschmidt echo \(L(\lambda )\) can be directly derived from \(f(\lambda )\). Specifically,

$$\begin{aligned} L(\lambda )=|f(\lambda )|^2=\prod _{k>0}\bigl (1-\sin ^2(2\alpha _k) \sin ^2(\varepsilon _e^kt)\bigr ), \end{aligned}$$

which is in accordance with the result in Ref. [24].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Luo, S. & Fu, S. Quantum criticality from Fisher information. Quantum Inf Process 16, 91 (2017). https://doi.org/10.1007/s11128-017-1543-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1543-9

Keywords

Navigation