
Quantum Inf Process (2017) 16:101
DOI 10.1007/s11128-017-1544-8

Quantum hidden Markov models based on transition
operation matrices

Michał Cholewa1 · Piotr Gawron1 ·
Przemysław Głomb1 · Dariusz Kurzyk1,2

Received: 16 February 2016 / Accepted: 12 February 2017 / Published online: 1 March 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In this work, we extend the idea of quantum Markov chains (Gudder in J
Math Phys 49(7):072105 [3]) in order to propose quantum hidden Markov models
(QHMMs). For that, we use the notions of transition operation matrices and vector
states, which are an extension of classical stochastic matrices and probability distri-
butions. Our main result is the Mealy QHMM formulation and proofs of algorithms
needed for application of this model: Forward for general case and Vitterbi for a
restricted class of QHMMs. We show the relations of the proposed model to other
quantum HMM propositions and present an example of application.
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1 Introduction

The most basic Markov model is a Markov chain, which can be defined as a stochastic
process with the Markov property. Formally, a Markov chain is a collection of ran-
dom variables {nt , t ≥ 0} having the property that P(nt+1 = Skt+1 |n1 = Sk1 , n2 =
Sk2 , . . . , nt = Skt ) = P(nt+1 = Skt+1 |nt = Skt ), where the values {S1, . . . , ST } of
nt are called states. They form the state space of the chain. According to the Markov
property, the current state of a chain is only dependent on the previous state. Moreover,
the state of a Markov chain is directly observed in each step. Any Markov chain can
be described by a directed graph called the state diagram, where vertices are associ-
ated with states and each edge (i, j) is labeled by the probability of going from i th
state to j th state. The information about Markov chain can be also represented by the
initial state ˙ and the stochastic matrix called transition matrix P = [pi j ], such that
pi j = P(nt+1 = S j |nt = Si ). If we consider a Markov chain where states are not
observed directly, and these states generate symbols according to some random vari-
ables, then we obtain a hidden Markov model (HMM). Hence, in the case of a Markov
chain, the states correspond with observations, but for a HMM, the states correspond
with the random source of observations.

The classical hidden Markov model was introduced as a method of modeling signal
sources observed in noise. It is now extensively used, e.g., in speech and gesture
recognition or biological sequence analysis. Their popularity is a result of their versatile
structure, which is able to model wide variety of problems, and effective algorithms that
facilitate their application. The HMM is related to three fundamental: given a sequence
of symbols of length T , O = (o1, o2, . . . , oT ), and a HMM parametrized by λ,

1. Compute the P(O|λ), probability that the sequence O can be produced by a HMM
λ.

2. Select the sequence of state indexes NT = (n0, n1, . . . , nT ) that maximizes the
probability P(O|λ, NT ), in other words the most likely state sequence in HMM
λ that produces O .

3. Adjust the model parameters λ to maximize P(O|λ).

The above problems are solved, respectively, by the Forward, Vitterbi and Baum–
Welch algorithms. The effectiveness of those algorithms is based on optimized
procedure of computation, which uses a ‘trellis’: a two-dimensional lattice struc-
ture of observations and states. This formulation is based on the Markov property of
model evolution and reduces the complexity from exponentialO(T NT ) to polynomial
O(N 2T ), where T is the number of observations and N is the number of model states
[1].

Depending on the formulation, there are two definitions of a hidden Markov model:
Mealy and Moore. In the former, the probability of next state being nt+1 depends both
on the current state nt and the generated output symbol ot . In the latter, the symbol
generation is independent from state switch, i.e., P(nt+1 = Si |ot+1 = o, nt = S j ) =
P(nt+1 = Si |nt = S j ). While the expressive power of Moore and Mealy models is
the same, i.e., a process can be realized with Moore model if and only if it is realizable
by Mealy model, the minimal model order for the realization is lower in Mealy models
[2]. In this work, we focus only on Mealy models.
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1.1 Related work

In this work, we follow the scheme proposed by Gudder in [3] and extend it in order to
construct quantum hidden Markov models (QHMMs). Gudder introduced the notions
of transition operation matrices and vector states, which give an elegant extension
of classical stochastic matrices and probability distributions. These notions allow to
define Markov processes that exhibit both classical and quantum behaviors.

Below we review two areas of research most closely related to our work: open
quantum walks and Hidden quantum Markov models.

Open quantumwalks In recent years, a new subfield of quantum walks has emerged. In
series of papers [4–9], Attal, Sabot, Sinayskiy and Petruccione introduced the notion of
open quantum walks. Theorems for limit distributions of open quantum random walks
were provided in [10]. In [11] the average position and the symmetry of distribution
in the SU (2) open quantum walk are studied. The notion of open quantum walks is
generalized to quantum operations of any rank in [12] and analyzed in [13]. In first of
these two papers, the notion of mean first passage time for a generalized quantum walk
is introduced and studied for class of walks on Apollonian networks. In the second
paper, a central limit theorem for reducible and irreducible open quantum walks is
provided. In a recent paper [14], authors introduce the notion of hybrid quantum
automaton—an object similar to quantum hidden Markov model. They use hybrid
quantum automata and derived concepts in application to model checking.

Quantum hidden Markov models Hidden quantum Markov models were introduced
in [15]. The construction provided there by the authors is different from ours. In their
work, the hidden quantum Markov model consists of a set of quantum operations
associated with emission symbols. The evolution of the system is governed by the
application of quantum operations on a quantum state. The sequence of emitted sym-
bols defines the sequence of quantum operations being applied on the initial state of
the hidden quantum Markov model.

1.2 Our contribution

In this work, we propose a quantum hidden Markov model formulation using the
notions of transition operation matrices. We focus on Mealy models, for which we
derive first the Forward algorithm in general case, then the Vitterbi algorithm, for
models restricted to those in which sub-TOMs’ elements are trace-monotonicity pre-
serving quantum operations. Subsequently, we discuss the relationship between our
model and model presented in [15]. The paper ends with the example of application
of proposed model.

The paper is organized as follows: In Sect. 2, we collect the basic mathematical
objects and their properties; in Sect. 3, we define quantum hidden Markov models
and provide Forward and Viterbi algorithms for these models; in Sect. 4, we discuss
the correspondences between proposed models and models described in [15]; Sect. 5
contains examples of application of our model; and finally in Sect. 6 we conclude.

123



101 Page 4 of 19 M. Cholewa et al.

2 Transition operation matrices

In what follows, we provide basic elements of quantum information theory and sum-
marize definitions and properties of objects introduced by Gudder in [3].

2.1 Quantum theory

Let H be a complex finite Hilbert space and L(H) be the set of linear operators on H.
We also denote the set of positive operators on H as P+(H) and the set of positive
semi-definite operators on H as P(H).

Definition 1 (Quantum state) A linear operator ρ ∈ P(H) is called a quantum state
if tr ρ = 1. Set of quantum states is denoted by Ω(H).

Definition 2 (Sub-normalized quantum state) A linear operator ρ ∈ P(H) is called
sub-normalized [16] quantum state if tr ρ ≤ 1. Set of sub-normalized quantum states
is denoted by Ω≤(H).

Definition 3 (Positive map) A linear map Φ ∈ L(L(H1),L(H2)) is called positive
map if, for every ρ ∈ P(H1), Φ(ρ) ∈ P(H2).

Definition 4 (Completely positivemap) A linear map Φ ∈ L(L(H1),L(H2)) is called
completely positive (CP) if for any complex Hilbert space H3, the map Φ ⊗ 1 ∈
L(L(H1 ⊗ H3),L(H2 ⊗ H3)) is positive.

Definition 5 (Trace preserving map) A linear map Φ ∈ L(L(H1),L(H2)) is called
trace preserving if tr(Φ(ρ)) = tr ρ for every ρ ∈ L(H1).

Definition 6 (Trace non-increasing map) A linear map Φ ∈ L(L(H1),L(H2)) is
called trace non-increasing if tr(Φ(ρ)) ≤ tr ρ = 1 for every quantum state ρ ∈
Ω(H1).

Definition 7 (Quantum operation) A linear map Φ ∈ L(L(H1),L(H2)) is called a
quantum operation if it is completely positive and trace non-increasing.

Definition 8 (Quantum channel) A linear map Φ ∈ L(L(H1),L(H2)) is called a
quantum channel if it is completely positive and trace preserving.

Definition 9 (Quantum measurement) By quantum measurement we call a mapping
from a finite set Θ of measurement outcomes to subset of set of measurement operators
μ : Θ → P(H) such that

∑
a∈Θ μ(a) = 1.

With each measurementμ, we associate a nonnegative functional p : Θ → R+∪{0}
which maps measurement outcome a for a given positive operator ρ and measurement
μ to nonnegative real number in the following way p(a)ρ = tr μ(a)ρ. If tr ρ = 1, for
given ρ and μ the value of p can be interpreted as probability of obtaining measurement
outcome a in quantum state ρ.

If ρ is a sub-normalized state, the trivial measurement μ : ae �→ 1 measures the
probability p(ae)ρ = tr ρ that the state ρ exists. One should note that this kind of
measurement commutes with any other measurement and thus does not disturb the
quantum system.
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2.2 Transition operation matrices

The core object of the Gudder’s scheme is transition operation matrix (TOM) which
generalizes the idea of stochastic matrix.

Definition 10 (Transitionoperationmatrix) LetH1,H2 denote two finite-dimensional
Hilbert spaces and Ω(H1),Ω(H2) denote sets of quantum states acting on those
spaces, respectively.

A TOM is a matrix in form E = {Ei j }M,N
i, j=1, where Ei j is completely positive map

in L(L(H1),L(H2)) such that for every j and ρ ∈ Ω(H1)
∑

i Ei j (ρ) ∈ Ω(H2).

Alternatively one can say that E = {Ei j }M,N
i, j=1 is a TOM if and only if for every

column j
∑

i Ei j is a quantum channel (completely positive trace preserving map).
A simple implication of this definition is that each Ei j is CP-TNI mapping.

Note that in this definition TOM has four parameters:

– size of matrix “output” (number of rows)—M ,
– size of matrix “input” (number of columns)—N ,
– “input” Hilbert space—H1,
– “output” Hilbert space—H2.

The set of TOMs we will denote as �M,N (H1,H2).

Definition 11 (Sub-transition operation matrix) Let H1, H2 denote two finite-
dimensional Hilbert spaces, Ω(H1) denotes set of quantum states acting on the first
space, and Ω≤(H2) denotes set of sub-normalized quantum states acting on the second
Hilbert space.

A sub-TOM is a matrix in the form E = {Ei j }M,N
i, j=1, where Ei j is completely pos-

itive map in L(L(H1),L(H2)) such that for every j and ρ ∈ Ω(H1).
∑

i Ei j (ρ) ∈
Ω≤(H2).

The set of sub-TOMs we will denote as �
M,N
≤ (H1,H2).

Definition 12 (QuantumMarkov chain) Let a TOME = {Ei j }M,N
i, j=1 be given. Quantum

Markov chain is a finite directed graph G = (E, V ) labeled by Ei j for e ∈ E and by
zero operator for e /∈ E .

Definition 13 (Vector state) Vector state is a column vector α = [α1, α2, . . . , αN ]T
such that αi ∈ Ω≤(H) are sub-normalized quantum states and

∑N
i=1 αi ∈ Ω(H). We

will denote the set of vector states as ΔN (H).

Definition 14 (Sub-normalized vector state) Sub-normalized vector state is a column
vector α = [α1, α2, . . . , αN ]T such that αi ∈ Ω≤(H) are sub-normalized quantum
states and

∑N
i=1 αi ∈ Ω≤(H). We will denote a set of sub-normalized vector states as

ΔN≤ (H).

Theorem 1 (Gudder [3]) Applying TOM E ∈ �M,N (H1,H2) on a vector state
α ∈ ΔN (H1) produces vector state β = E(α) ∈ ΔM (H2) where α =
[α1, α2, . . . , αN ]T , αi ∈ Ω≤(H1), where β = [β1, β2, . . . , βM ]T , βi ∈ Ω≤(H2),
and E ∈ �M,N (H1,H2), and in the following way βi =∑N

j=1 Ei j (α j ).
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Theorem 2 (Gudder [3]) Product of TOM A ∈ �M,N (H1,H2) and B ∈
�N ,K (H2,H3) is a TOM �M,K (H1,H3) 	 C = BA.

Lemma 1 (Product of two sub-TOMs is a sub-TOM) Product of sub-TOMs A ∈
�
M,N
≤ (H1,H2) and B ∈ �

N ,K
≤ (H2,H3) is a sub-TOM �

M,K
≤ (H1,H3) 	 C = BA.

Proof of Lemma 1 According to proof of Lemma 2.2 in [3], Ci j = Bi jAi j is a com-
pletely positive map. For every ρ ∈ Ω(H1) and j we have that σ = ∑M

i=1 Ai j (ρ) ∈
Ω≤(H2). If tr(σ ) > 0 then σ̃ = σ/ tr(σ ) ∈ Ω(H2) and

tr

(
M∑

i=1

Bi j (σ )

)

= tr

(

tr(σ )

M∑

i=1

Bi j (σ̃ )

)

= tr(σ ) tr

(
M∑

i=1

Bi j (σ̃ )

)

≤ 1.

(1)

In the case where tr(σ ) = 0, the σ is the zero operator and
∑M

i=1 Bi j (σ ) is also the

zero operator. Thus tr
(∑M

i=1 Bi j (σ )
)

= 0. Hence,
∑M

i=1 Ci, j (ρ) ∈ Ω≤(H3) and

C ∈ �
M,K
≤ (H1,H3). 
�

Product of (sub-)TOMs that have same dimensions is associative, i.e., (EF)G =
E(FG) and (EF)(α) = E(F(α)).

3 Mealy quantum hidden Markov model

In order to explain the idea of QHMM, we can form following analogy. A QHMM
might be understood as a system consisting of a particle that has an internal sub-
normalized quantum state ρ ∈ Ω≤(H), and it occupies a classical state Si . This
particle hops from one classical state Si into another state S j passing trough a quantum

operation associated with a sub-TOM element PVk
S j ,Si

. With each transition, a symbol
Vk is emitted from the system.

We will now define the classical and quantum version of the Mealy hidden Markov
model.

Definition 15 (Finite sequences) Let

VT = V × V × · · · × V︸ ︷︷ ︸
T

defines the set of sequences of length T over alphabet V .

Definition 16 (Mealy hidden Markov model) Let S = {S1, . . . , SN } and V =
{V1, . . . , VM } be a set of states and an alphabet, respectively. The Mealy HMM is
specified by a tuple λ = (S,V,Π, π), where
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– π ∈ [0, 1]N is a stochastic vector representing initial states, where πi is the
probability that the initial state is Si ;

– Π is a mapping V 	 Vi �→ ΠVi ∈ R
N ,N , where ΠVi is sub-stochastic matrix,

such that ΠΣ := ∑M
i=1 ΠVi ∈ R

N ,N is stochastic matrix and Π
Vi
j,k is p(nt+1 =

Sk, ot+1 = Vi |nt = S j ), that is probability of going from state j to k while
generating the output Vi .

Let O = o1o2, . . . oT ∈ VT be a sequence of length T and P : VT → [0, 1] be string
probabilities, defined as P(O) = p(O(1) = o1, O(2) = o2, . . . , O(T ) = oT ). The
concatenation of string O and oT+1 is denoted by OoT+1.

It is well known that for HMMs the function P satisfies

–
∑

O∈VT P(O) = 1 and
–
∑

oT+1∈V P(OoT+1) = P(O), which follows from the law of total probability.

The string probabilities generated by Mealy HMM λ = (S,V,Π, π) are given by

P(O|λ) =
N∑

i=1

αi ,

where αi is i th element of α = ΠoT ΠoT−1 . . . Πo1π .

Definition 17 (Mealy quantum hidden Markov model) Let S and V be a set of states
and an alphabet, respectively. Mealy QHMM is specified by a tuple λ = (S,V,P, π),
where

– π ∈ ΔN (H) is an initial vector state;
– P is a mapping V → �

N ,N
≤ (H,H) such that P S := ∑

Vi∈V PVi ∈ �N ,N (H,H)

is a TOM, with PVi being value of P for Vi .

As an example we give a three-state two-symbol Mealy QHMM λ = (S,V,Π, π),
with

S = {S1, S2, S3},
V = {V1, V2},
Π =

{
V1 �→ PV1 , V2 �→ PV2

}
,

π =
⎡

⎣
πS1

πS2

πS3

⎤

⎦ ,

PV1 =

⎡

⎢
⎢
⎣

PV1
S1S1

PV1
S1S2

PV1
S1S3

PV1
S2S1

PV1
S2S2

PV1
S2S3

PV1
S3S1

PV1
S3S2

PV1
S3S3

⎤

⎥
⎥
⎦ ,

PV2 =

⎡

⎢
⎢
⎣

PV2
S1S1

PV2
S1S2

PV2
S1S3

PV2
S2S1

PV2
S2S2

PV2
S2S3

PV2
S3S1

PV2
S3S2

PV2
S3S3

⎤

⎥
⎥
⎦ .
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S1 S2

S3

PV1
S1S1

|V1

PV2
S1S1

|V2
PV1
S2S1

|V1

PV2
S2S1

|V2

P
V
1S
3 S

1 |V
1

P
V
2S
3 S

1 |V
2

PV1
S1S2

|V1

PV2
S1S2

|V2

PV1
S2S2

|V1

PV2
S2S2

|V2

P
V
1

S
3
S
2
|V 1

P
V
2

S
3
S
2
|V 2

P
V
1S
1 S

3 |V
1

P
V
2S
1 S

3 |V
2 P

V
1

S
2
S
3
|V 1

P
V
2

S
2
S
3
|V 2

PV1
S3S3

|V1 PV2
S3S3

|V2

Fig. 1 Graphical representation of three-state Mealy QHMM λ, whose alphabet consists of two symbols

V1, V2. The symbolPV1
S2S3

|V1 should be understood in the following way: when QHMM is in state S3 and is
being transformed to state S2 while emitting symbol V1, then the internal quantum sub-state is transformed

by quantum operation PV1
S2S3

|V1

A graphical representation of this QHMM is presented in Fig. 1.

Remark 1 For dim H = 1 QHMM reduces to classical HMM. In this case, TOMs
reduce to stochastic matrices, sub-TOMs to sub-stochastic matrices, the vector states
to probability vectors, sub-vector states to sub-normalized probability vectors.

3.1 Forward algorithm for Mealy QHMM

With each Mealy QHMM we can associate a mapping

� : V∗ → Ω≤(H),

where V∗ =⋃∞
T=1 VT . Given a sequence O = (o1, o2, . . . , oT ) and a Mealy QHMM

λ one can compute resulting sub-normalized quantum state ρO|λ.
Let us consider sub-normalized vector states

αT = [αT,1, . . . , αT,N
]T ∈ ΔN≤ (H)

such that

αT = PoT . . .Po2Po1(π), (2)

then ρO|λ := �(O) =∑N
i=1 αT,i .

Equation (2) we call the Forward algorithm for QHMMs. Note that the result of
this algorithm is a sub-normalized quantum state ρO|λ ∈ Ω≤(H). The sum of all
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those states over all possible sequences of a given length forms a quantum state, as
formulated in the following theorem.

Theorem 3 For any QHMM λ we have
∑

O∈VT ρO|λ ∈ Ω(H).

In order to prove this theorem, we will first prove the following lemma.

Lemma 2 For any QHMM λ the following holds

∑

O∈VT

PoTPoT−1 . . .Po1(π) ∈ ΔN (H).

Proof Lemma 2 We will proceed by induction. For case T = 1, we have

β1 =
∑

o∈V
Po(π) = P S(π) ∈ ΔN (H).

For case T = n + 1

βT =
∑

O∈VN+1

PoN+1PoN . . .Po1(π)

=
∑

on+1∈V
Pon+1

∑

O∈VN

PoNPoN−1 . . .Po1(π)

=P S
∑

O∈VN

PoNPoN−1 . . .Po1

︸ ︷︷ ︸
X

(π).

(3)

By inductive hypothesis X is a TOM. P S is a TOM, therefore βT ∈ ΔN (H). 
�
Proof Theorem 3

∑

O∈VT

ρO|λ

=
∑

O∈VT

N∑

i=1

αT,i

=
∑

O∈VT

N∑

i=1

[PoT . . .Po2Po1(π)
]
i

=
N∑

i=1

[ ∑

O∈VT

PoT . . .Po2Po1

︸ ︷︷ ︸
X

(π)
]

i

=
N∑

i=1

[X (π)]i

(4)
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Since by Lemma 2 X is a TOM, therefore
∑

O∈VT ρO|λ ∈ Ω(H). 
�

Theorem 4 Let O = (o1, o2, . . . , oT ) be a sequence of length T and OoT+1 be a
concatenation of O and oT+1, then for any QHMM λ the following holds

∑

oT+1∈V
ρOoT+1|λ = ρO|λ. (5)

Proof Theorem 4
According to law of total probability for TOMs [3], we get

∑

ot+1∈V
ρOot+1|λ =

∑

ot+1∈V

N∑

i=1

Pot+1
i (αT,i )

=
N∑

i=1

∑

ot+1∈V
Pot+1
i (αT,i )

=
N∑

i=1

αT,i = ρO|λ.

(6)


�

3.2 Viterbi algorithm for Mealy QHMM

We are given a QHMM λ with set of states S = {S1, S2, . . . , SN } and an alphabet of
symbols V = {V1, V2, . . . , VM }. We will denote Pk

i j := PVk
Si S j

.
We have a sequence of length T , O = (o1, o2, . . . , oT ), of symbols from alphabet

V , oi ∈ V .
A Mealy QHMM emits symbols on transition from one state to the next. For our

sequence O , we index corresponding QHMM states by ni , i.e., n0 is the initial state
(before the emission of the first symbol), and ni , i ≥ 1 is the state after emission of
the symbol oi . ni ∈ S.

The goal of the algorithm is to find most likely sequence of states conditioned on
a sequence of emitted symbols O .

We denote the set of partial sequences of state indexes as Nk = {(n0, n1, . . . , nk) :
n j ∈ S, j = 0, 1, . . . , k}, where k ≤ T . A set beginning with n0 and ending after

k steps with Si we denote NSi
k = {(n0, n1, . . . , nk−1, nk = Si ) : n j ∈ S, j =

0, 1, . . . , k} ⊂ Nk .

Theorem 5 Let O be a given sequence of emissions from V . Let λ = (S,V,P, π) be
a Mealy QHMM satisfying
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∀ni ,n j∈S,o∈O∀α,β∈Ω≤(H) tr α > tr β

�⇒ tr Po
ni ,n j

(α) > tr Po
ni ,n j

(β)
(7)

i.e., all sub-TOMs elements are trace-monotonicity preserving quantum operations.
We define w ∈ NSi

k to be a sequence of k states ending with Si . A sub-
normalized state associated with w and sequence O is Bw ∈ Ω≤(H) defined as
Bw = Pok

nk ,nk−1Pok−1
nk−1,nk−2 . . .Po1

n1,n0(πn0). The sub-normalized state that maximizes

trace over set of all Bws with w ∈ NSi
k is

Ak,Si = argmax
{
Bw :w∈NSi

k

}
tr Bw. (8)

Then the following holds

tr Ak,Si = max
nk−1∈S

tr Pok
nk=Si ,nk−1

(Ak−1,nk−1). (9)

Proof Let us denote

w∗
k,Si = (n∗

0, . . . , n
∗
k−1, n

∗
k = Si ) ∈ NSi

k (10)

as the sequence of states maximizing trace of Bw, so that

tr Ak,Si = tr Bw∗
k,Si

. (11)

We now have

tr Ak,Si = max
w∈NSi

k

tr Bw

= max
n0,...,nk−1,nk=Si

tr Pok
nk ,nk−1

Pok−1
nk−1,nk−2 . . .Po1

n1,n0
(πn0)

(12)

Obviously

tr Ak,Si = tr Pok
n∗
k ,n

∗
k−1

Pok−1
n∗
k−1,n

∗
k−2

. . .Po1
n∗

1,n∗
0
(πn∗

0
) (13)

We will now prove that for n∗
k = Si

w∗
k,Si = (n∗

0, . . . , n
∗
k−1, n

∗
k)

�⇒ w∗
k−1,n∗

k−1
= (n∗

0, . . . , n
∗
k−1).

(14)

Let us assume that it is not true. That would mean that

w∗
k−1,n∗

k−1
= (l∗0 , . . . , l∗k−2, n

∗
k−1) �= (n∗

0, . . . , n
∗
k−2, n

∗
k−1).
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Of course

tr B(l∗0 ,...,l∗k−2,n
∗
k−1)

> tr B(n∗
0,...,n∗

k−2,n
∗
k−1)

From this, and (7), we have

∀nk∈S,yk∈{1,2,...,M} tr Pok
nk ,n∗

k−1
(B(l∗0 ,...,l∗k−2,n

∗
k−1)

)

> tr Pok
nk ,n∗

k−1
(B(n∗

0,...,n∗
k−2,n

∗
k−1)

),

that leads to

w∗
k,Si �= (n∗

0, . . . , n
∗
k−1, n

∗
k)

which is a contradiction. That proves that implication (14) holds.
Then, for nk = Si

tr Ak,Si = tr Bw∗
k,Si

= tr Pok
n∗
k ,n

∗
k−1

(Bw∗
k,n∗

k−1

)

= tr Pok
n∗
k ,n

∗
k−1

(Ak−1,n∗
k−1

)

= max
nk−1∈S

tr Pok
nk=Si ,nk−1

(Ak−1,nk−1).

(15)


�
Remark 2 It can be easily seen that Theorem 7 holds iff quantum operation P y

n j ,ni is
of form c · Φ, where c ∈ [0, 1) and Φ is a quantum channel (CP-TP map).

From Theorem 5, we immediately derive the Viterbi algorithm for Mealy QHMMs
conditioned with (7) that computes most likely sequence of states for a given sequence
O .

Initialization:

A0,Si = πSi (16)

Computation for step number k:

∀Si∈S,k∈{1,...,T } n∗
k−1(Si )

= argmax
nk−1∈S

tr Pok
Si ,nk−1

(Ak−1,nk−1)
(17)

∀Si∈S,k∈{1,...,T } Ak,Si = Pok
Si ,n∗

k−1(Si )
(Ak−1,n∗

k−1(Si )
), (18)

Termination:

n∗
T = argmax

Si∈S
tr AT,Si . (19)
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The most probable state sequence is (n∗
0, . . . , n

∗
T ), with resulting state being AT,n∗

T
with probability given by tr AT,n∗

T
.

In case when (7) does not apply, one can resort to exhaustive search over all state
sequences. As a result of the multitude of possible quantum operations the behavior
of the quantum hidden Markov model can be markedly different than its classical
counterpart. This is similar to the relation of quantum and classical Markov models
[12].

4 Relation with model proposed by Monras et al.

In [15] hidden quantum Markov model is defined, by Monras et al., as a tuple consisting
of: a d-level quantum system with an initial state ρ0, alphabet V = {Vi }, a set of quan-
tum operations (CP-TNI maps) {KVi } such that

∑
i KVi is a quantum channel (CP-TP

map). The system evolves in discrete time steps and subsequently generates symbols
O = (o1, o2, . . . , oT ) from alphabet V with probability P(ot ) = tr KVi=ot (ρt ) in
every time step. After generation of the symbol ot , the sub-normalized quantum state
is updated to ρt = KVi=ot (ρt−1). Moreover,KVi can be represented by Kraus operators
{KVi

j }. It means that KVi (ρ) =∑ j K
Vi
j ρ(KVi

j )† and ρt =∑ j K
Vi=ot
j ρt−1(K

Vi=ot
j )†,

where
∑

j (K
Vi
j )†(KVi

j ) ≤ 1. Here we omit the normalization factor; therefore, with
every sequence O a sub-normalized quantum state is associated.

In the case of Monras et al. model, the number of internal states is equal to dimen-
sion of quantum system. In our case, the states are divided into two distinct classes:
“internal” quantum states and “external” classical states. Our model can be reduced
to the model presented by Monras et al. by performing the following transformation.
First, we need to extend the alphabet V with the symbol $. Second, we concatenate
every sequence O with the symbol $. Third, we associate symbol $ with operation
of partial trace over the classical system: K$(ρ) = trH2 ρ. Fourth, we express (sub-
)vector states α as block diagonal (sub-)normalized quantum states and sub-TOMs P
as quantum operations.

According to the above, we can notice that KVi corresponds to PVi , whose
elements PVi

k,l are represented by Kraus operators {EVi
k,l, j }, hence PVi

k,l(ρ) =
∑

j E
Vi
k,l, jρ(EVi

k,l, j )
†. Let us construct the set of operators {ÊVi

k,l, j } in the form

ÊVi
k,l, j = EVi

k,l, j ⊗ |k〉〈l|, then similarly as in [12], it can be proved that

∑

j,k,l

(ÊVi
k,l, j )

† ÊVi
k,l, j ≤ 1.

Now, consider vector state αT = PoT . . .Po2Po1(π) = [α1, α2, . . . , αN ]T with asso-
ciated a block diagonal quantum state ρα =∑N

i αi ⊗ |i〉〈i | ∈ �(H1 ⊗ H2), then

ρO$ = trH2

∑

j,k,l

Ê Vi=oT
k,l, j · · · ÊVi=o2

k,l, j Ê Vi=o1
k,l, j ρα

(
ÊVi=o1
k,l, j

)† (
ÊVi=o2
k,l, j

)† · · ·
(
ÊVi=oT
k,l, j

)†
.

(20)
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Thus, our model can be expressed in the language proposed by Monras et al. How-
ever, formalism proposed in this paper has three notable advantages. First, it presents
a hybrid quantum-classical model similar to the one presented in [14] therefore has
similar field of applications. Our model intuitively generalizes both classical and quan-
tum models. Second, this model allows us to propose a generalized version of Viterbi
algorithm. Third, the use of TOM and vector states formalism reduces the amount of
memory required to numerically simulate hybrid quantum-classical Markov models.

5 Examples of application

5.1 Example 1

Let us consider alphabet V = {a, b, c}. We define a set of sequences O ⊂ VT

of length T and having Oi = a for odd i , and Oi ∈ {b, c} for even i , i.e.,
aba, abaca, acacabaca.

Let T = 3. Our objective is to build a model able to differentiate sequences in
O from all other sequences. In classical case, our model could be given by a HMM
parametrized by λc1 = (S,V,Π, π), where

S ={s1, s2}, π =
[

0
1

]

,

Π =
{

Πa =
[

0 1
0 0

]

,Πb =
[

0 0
1
2 0

]

,Πc =
[

0 0
1
2 0

]}

.

(21)

It is obvious that p(aba|λc1) = p(aca|λc1) = 1
2 , whereas for other possible sequences

we get
∑

O∈VT \O p(O|λc1) = 0.
If we are interested in further differentiatingaba fromaca, we could either construct

two HMMs, one for each sequence, i.e., for aba parametrized by λc2 = (S,V,Π, π),
where

Π =
{

Πa =
[

0 1
0 0

]

,Πb =
[

0 0
1
2 0

]}

(22)

and similarly for aca, or by building a three-state HMM λc3 = (S,V,Π, π)

S ={s1, s2, s3}, π =
⎡

⎣
0
1
0

⎤

⎦ ,

Π =
⎧
⎨

⎩
Πa =

⎡

⎣
0 1 1
0 0 0
0 0 0

⎤

⎦ ,Πb =
⎡

⎣
0 0 0
1
2 0 0
0 0 0

⎤

⎦ ,Πc =
⎡

⎣
0 0 0
0 0 0
1
2 0 0

⎤

⎦

⎫
⎬

⎭

(23)

and recognize the sequences—aba from aca—based on the output of Vitterbi algo-
rithm.
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We can solve the problem of discrimination by using QHMM λ
q
1 = (S,V,P, π),

with the following parameters

S = {s1, s2}, π =
[

02
|0〉〈0|

]

,

Π =
{

Pa =
[

04 14
04 04

]

, Pb =
[

04 04
1
2ΦU 04

]

, Pc =
[

04 04
1
214 04

]}

,

(24)

where ΦU (·) = U ·U † is unitary channel, such that U =
[

cos π
2 − sin π

2
sin π

2 cos π
2

]

and 0n , 1n

are zero and identity operators over vector space of dimension n, respectively.
Moreover, let μ : {b �→ |1〉〈1| , c �→ |0〉〈0|} be a measurement.
Let us consider the application of quantum Forward algorithm on sequence

aba. Initial vector state of the algorithm is α0 =
[

02
|0〉〈0|

]

, and the final state is

α3 =
[ 1

2U |0〉〈0|U †

02

]

. The associate sub-normalized quantum state is ρaba|λq1 =
1
2U |0〉〈0|U †; therefore, the resulting sequence of probabilities is given by

(tr ρaba|λq1 μ(b), tr ρaba|λq1 μ(c)) =
(

1

2
, 0

)

. (25)

It is obvious that application of quantum Forward algorithm on sequence aca gives
result (0, 1

2 ) and
∑

O∈VT \O tr ρO|λq1 = 0.
We have shown that it is possible to construct two-state QHMM that fulfills the

same task as pair of two-state HMMs or three-state HMM.

5.2 Example 2

Let us consider language A consisting of the sequences ak1bk2ak3 . . ., where
k1, k2, k3, . . . are nonnegative odd integers and a, b are symbols from alphabet
V = {a, b}. In other words, language A contains these sentences in which odd length
subsequences of letters a and b alternate.

Classically, sequences from this language can be generated by four-state HMM
λc = (S,V,Π, π) presented in Fig. 2a, where

S = {s1, s2, s3, s4}, π =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦ ,

Π =

⎧
⎪⎪⎨

⎪⎪⎩

Πa =

⎡

⎢
⎢
⎣

0 1 0 0
1
2 0 0 0
0 0 0 0
1
2 0 0 0

⎤

⎥
⎥
⎦ , Πb =

⎡

⎢
⎢
⎣

0 0 0 1
2

0 0 0 0
0 0 0 1

2
0 0 1 0

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

.

(26)

123



101 Page 16 of 19 M. Cholewa et al.

It is easy to check that for any sequence ak1bk2ak3 · · · from the language A, probability

p(ak1bk2ak3 · · · |λc) is nonzero and equals p(ak1bk2ak3 · · · |λc) = ( 1
2 )

k1+1
2 ( 1

2 )
k2+1

2

( 1
2 )

k3+1
2 · · · . Moreover, if any ki is even, then p(ak1bk2ak3 · · · |λc) = 0.

Let us consider matrix of probabilities p(ak1bk2ak3 · · · |λc) given as

H̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 p(a|λc) p(b|λc) p(aa|λc) p(ab|λc) p(ba|λc) · · ·
p(a|λc) p(aa|λc) p(ba|λc) p(aaa|λc) p(aba|λc) p(baa|λc) · · ·
p(b|λc) p(ab|λc) p(bb|λc) p(aab|λc) p(abb|λc) p(bab|λc) · · ·
p(aa|λc) p(aaa|λc) p(baa|λc) p(aaaa|λc) p(abaa|λc) p(baaa|λc) · · ·
p(ab|λc) p(aab|λc) p(bab|λc) p(aaab|λc) p(abab|λc) p(baab|λc) · · ·
p(ba|λc) p(aba|λc) p(bba|λc) p(aaba|λc) p(abba|λc) p(baba|λc) · · ·

...
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(27)

Notice that any upper-left corner of matrix H̃ is known as the Hankel matrix. Denote
by H̃d a upper-left d-size sub-matrix of matrix H̃ . Subsequently, let us notice that

rank(H̃11) = rank

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
2 0 1

2
1
4 0 0 1

4 0 1
8

1
4

1
2

1
2 0 1

4
1
8 0 0 1

4 0 1
8 0

0 1
4 0 0 1

4 0 0 1
8 0 1

16
1
8

1
2

1
4 0 1

4
1
8 0 0 1

8 0 1
16 0

1
4 0 0 1

8
1
16 0 0 0 0 0 0

0 1
8 0 0 0 0 0 1

16 0 1
32

1
16

0 1
4 0 0 1

8 0 0 1
8 0 1

16
1
8

1
4

1
4 0 1

8
1
16 0 0 1

8 0 1
16 0

0 1
8 0 0 0 0 0 1

16 0 1
32 0

1
8 0 0 1

16
1

32 0 0 0 0 0 0

1
4 0 0 1

8
1
16 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 4. (28)

Since rank(H̃11) = 4, four-state HMM λc = (S,V,Π, π) cannot be reduced to
HMM with smaller number of states [17,18].

The application of the QHMM for the generation of sequences from A can reduce
the number of the states to three. Let us consider QHMM λq = (S,V,Π, π) presented
in Fig. 2b, with
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s1 s2 s3 s4

1
2 a

1
2 a

1 a 1
2 b

1
2 b

1 b

(a)

s1 s2 s3

ΦH|0 0| a

ΦH|1 1| b

Φ|+ +| a ΦH|1 1| b

ΦH|0 0| a

Φ b

(b)

Fig. 2 Examples of HMM (a) and QHMM (b) generating with nonzero probabilities sequences
ak1bk2ak3 · · · , where k1, k2, k3, . . . are nonnegative odd integers

S = {s1, s2, s3}, π =
⎡

⎣
02
02

|0〉〈0|

⎤

⎦ ,

Π =
⎧
⎨

⎩
Pa =

⎡

⎣
04 Φ|+〉〈+| ΦH |0〉〈0|

ΦH |0〉〈0| 04 04
04 04 04

⎤

⎦ , Pb =
⎡

⎣
04 04 04
04 04 ΦH |1〉〈1|

ΦH |1〉〈1| Φ|−〉〈−| 04

⎤

⎦

⎫
⎬

⎭
,

(29)

where ΦX (·) = X · X† and X ∈ {|+〉〈+| , |−〉〈−| , H |0〉〈0| , H |1〉〈1|}.
Notice that, for any sequence ak1bk2ak3 · · · , where k1, k2, k3, . . . are nonnegative

odd integers, the final state is given as

αk1k2k3... =

⎡

⎢
⎢
⎣

( 1
2

) k1+1
2
( 1

2

) k2+1
2
( 1

2

) k3+1
2 · · ·

[
1 1
1 1

]

02
02

⎤

⎥
⎥
⎦

or

αk1k2k3... =

⎡

⎢
⎢
⎣

02
02

( 1
2

) k1+1
2
( 1

2

) k2+1
2
( 1

2

) k3+1
2 · · ·

[
1 −1

−1 1

]

⎤

⎥
⎥
⎦ .

Moreover, if any ki is even, then αk1k2k3... =
⎡

⎣
02
02
02

⎤

⎦. Therefore, we have shown

that it is possible to construct thee-state QHMM generating sequences from A with
the same probabilities like its classical four-state counterpart. Those probabilities
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tr ρak1bk2ak3 ···|λq are obtained from trivial measurements of sub-normalized quantum
states ρak1bk2ak3 |λq ···.

6 Conclusions

We have introduced a new model of quantum hidden Markov models based on the
notions of transition operation matrices and vector states. We have shown that for
a subclass of QHMMs and emission sequences the modified Viterbi algorithm can
be used to calculate the most likely sequence of internal states that lead to a given
emission sequence. Because of the fact that the structure of quantum hidden Markov
models is more complicated than their classical counterparts, in general case the most
likely sequence of states leading to a given emissions sequence has to be calculated
using extensive search. We have also proposed a formulation of the Forward algorithm
that is applicable for general QHMMs.

For given a sequence of symbols of length T , O = (o1, o2, . . . , oT ), a sequence
of states NT = (n0, n1, . . . , nT ) and a classical Mealy HMM with parameters λ, the
joint probability distribution P(NT , O) can be factored into

P(NT , O) = P(n0)

T∏

t=1

P(nt |ot , nt−1)P(ot |nt−1). (30)

As in the case of classical Moore HMM [19], the above factorization can be considered
as a simple dynamic Bayesian network. Hence, the concept of QHMM proposed in
this manuscript gives basis to quantum generalization of dynamic Bayesian networks.

We believe that proposed model can find applications in modeling systems that
posses both quantum and classical features.
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