
SUPER QUANTUM DISCORD FOR GENERAL TWO QUBIT X STATES

NAIHUAN JING, BING YU∗

Abstract. The exact solutions of the super quantum discord are derived for general
two qubit X states in terms of a one-variable function. Several exact solutions of the
super quantum discord are given for the general X-state over nontrivial regions of a seven
dimensional manifold. It is shown that the super quantum discord of the X state may
increase or decreases under the phase damping channel.

1. INTRODUCTION

Quantum discord measures the difference between the total correlation and classical cor-
relation based on a family of complete mutually orthogonal projectors such as the von
Neumann measurements [1, 2]. It has been investigated in various works, and reveals new
properties in quantum correlations [3–11]. As quantum states are fragile to quantum mea-
surements; when they are undergone projective measurements, their coherence are likely to
be loosed. In 1988, Aharonov, Albert, and Vaidman have proposed to use weak measure-
ments [12], which cause only small changes to the state, and it is expected that the quantum
state may loose partial coherence under the weak measurements. Recently, the quantum
discord under weak measurement, called the “super quantum discord” (SQD) by Singh and
Pati, brings new hope for deeper insights on the quantum correlation [13]. It is known
that the weak measurement captures more quantum correlation of a bipartite system than
the strong (projective) measurement under certain situation. Since then, SQD has been
studied in various perspectives [14–17]. It is known that the solution is equivalent to the
optimization of a multi-variable function with seven parameters. However, exact solutions
of SQD are few for general two qubit X states, except for the case of diagonal states.

We observe that most of the previous methods claim that the super quantum discords
are given by the entropic functions at the endpoints, which is unfortunately an incorrect
statement (see counterexamples given in Example 3). Thus it is necessary to settle the
super quantum discord in the general case of X-type states.

The aim of this paper is to propose a brand new method to compute the super quantum
discord by reducing the optimization to that of one-variable function. This completely
solves the problem in principle. We also give analytical formulas of the SQD for several
nontrivial regions of the parameters. To examine the dynamic behavior of SQD under
damping channel, we also analyzed the super quantum discord through the phase damping
channel. It is shown that the super quantum discord of the X state may decreases or increase
under the damping channel. However, there also exists an example of X-state where the
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super quantum discord is stable or even decreasing through the whole process under the
damping channel.

The article is organized as follows: in section II, we shall review the weak measurement
formalism and the definition for super quantum discord. In section III, we shall give an
analytic solution for the SQD of general two qubit X-type states and also show that SQD
is given by the minimum of a one-variable entropy-like function. In section IV, we shall
analyze the dynamics of super quantum discord under phase damping channel. In section
V,we shall conclude our work. Two appendixes present details proofs of lemma 3.1 and
theorem 3.2.

2. THE DEFINITION FOR SUPER QUANTUM DISCORD

Let Π0,Π1 be a pair of orthogonal projectors such that ΠiΠj = δijΠi,Π0 + Π1 = I. In
order to study more general situation, one considers the weak measurement operators which
are a pair of complete mutual parameterized orthogonal operators that are not necessarily
idempotents. For any real x > 0, let

(2.1) P (±x) =

√
1∓ tanhx

2
Π0 +

√
1± tanhx

2
Π1.

Then P (±x)2 = I± tanhx
2 (Π1−Π0), P (x)P (−x) = P (x)P (−x) = 0 and P (x)2+P (−x)2 = I.

Moreover, (ii) limx→∞ P (x) = Π1 and limx→∞ P (−x) = Π0. We will call P (x), P (−x) a
pair of weak measurement operators associated with Πi [18].

The super quantum discord of a bipartite quantum state ρAB with weak measurements
on the subsystem B is the difference between the quantum mutual correlation I(ρAB) and
the classical correlation J (ρAB) [13]. Recall that the quantum mutual information is given
by [19]

I(ρAB) = S(ρA) + S(ρB)− S(ρAB),

where S(ρA), S(ρB), S(ρAB) are the von Neumann entropies of the reduced state ρA =
TrB(ρAB), ρB = TrA(ρAB), and the total state ρAB respectively. The classical correlation
represents the information gained about the subsystem A after performing the measure-
ments PB(x) = P (x) on subsystem B [2] and it is defined as by the supremum

J (ρAB) = S(ρA)− min
{PB(x)}

S(A|{PB(x)}),(2.2)

where

S(A|PB(x)) = p(x)S(ρA|PB(x)) + p(−x)S(ρA|PB(−x)),

p(±x) = tr[(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))],

ρA|PB(±x) =
1

p(±x)
trB[(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))].
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Finally the super quantum discord SD(ρAB) is defined as the difference between I(ρAB)
and J (ρAB),

SD(ρAB) = I(ρAB)− J (ρAB)

= S(ρB)− S(ρAB) + min
{PB(x)}

S(A|{PB(x)}).(2.3)

When limx → ∞, super quantum discord becomes the usual quantum discord under the
von Neumann measurements. Therefore its computation can be extremely challenging given
that the discord is a nontrivial optimization problem over a parameterized manifold with
boundary.

3. SUPER QUANTUM DISCORD for TWO QUBIT X STATES

We consider the general two qubit X state written in the matrix form in terms of the
usual basis:

ρAB =


ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44

 .(3.1)

As a density matrix, the coefficients ρij are complex numbers and satisfy the following

conditions:
4∑
i=1

ρii = 1, ρ22ρ33 ≥ |ρ23|2 , ρ11ρ44 ≥ |ρ14|2, ρii ∈ R, ρ23 = ρ∗32, and ρ14 = ρ∗41.

Introduce real parameters r = ρ11 − ρ44 + ρ22 − ρ33, s = ρ11 − ρ44 − ρ22 + ρ33, c3 =
ρ11 +ρ44−ρ22−ρ33, and complex variables c1 = 2(ρ23 +ρ14) and c2 = 2(ρ23−ρ14). Suppose
the real and imaginary parts of ci are ai and bi (i = 1, 2):

ci = ai +
√
−1bi.

Then the Bloch form of ρAB is

ρAB

=
1

4
[I + c3σ3 ⊗ σ3 +

∑
i=1,2

aiσi ⊗ σi + sI ⊗ σ3 + rσ3 ⊗ I + b2σ1 ⊗ σ2 − b1σ2 ⊗ σ1],(3.2)

where σi are the Pauli spin matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −

√
−1√

−1 0

)
, σ3 =

(
1 0
0 −1

)
It is easy to compute the eigenvalues of ρAB:

λ1,2 =
1

4
(1 + c3 ±

√
(r + s)2 + (a1 − a2)2 + (b1 − b2)2),(3.3)

λ3,4 =
1

4
(1− c3 ±

√
(r − s)2 + (a1 + a2)2 + (b1 + b2)2).(3.4)
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The marginal state of ρAB are then given by

ρA = diag(
1

2
(1 + r),

1

2
(1− r)),

ρB = diag(
1

2
(1 + s),

1

2
(1− s)).

For |y| 6 1, define the entropic function

E(y) = 1− 1

2
(1 + y) log2(1 + y)− 1

2
(1− y) log2(1− y).(3.5)

Here the values at E(±1) are taken as limy→±1E(y) = 0. Then the von Neumann entropies
S(ρA) and S(ρB) are given by

S(ρA) = E(r),

S(ρB) = E(s).

With these quantities, the quantum mutual information is computed as

I(ρAB) = S(ρA) + S(ρB) +
4∑
i=1

λi log2 λi

= −4 + E(r) + E(s) + E(c3)

+
1 + c3

2
E(

√
(r + s)2 + |c1 − c2|2

1 + c3
) +

1− c3
2

E(

√
(r − s)2 + |c1 + c2|2

1− c3
).(3.6)

The weak measurements {PB(x)} are associated with Πi, which can be parameterized
through the the special unitary group SU(2). Up to a phase factor, any element V of

SU(2) can be written as V = tI + i
∑3

i=1 yiσi, where t, y1, y2, y3 are real numbers such that
t2 + y21 + y22 + y23 = 1. One can directly compute that

(3.7) V †σ1V = (t2 + y21 − y22 − y23)σ1 + 2(ty3 + y1y2)σ2 + 2(−ty2 + y1y3)σ3,

and V †σ2V , V †σ3V are obtained from (3.7) under the cyclic permutations (σ1, σ2, σ3) 7→
(σ2, σ3, σ1) and (y1, y2, y3) 7→ (y2, y3, y1).

Let

z1 = 2(−ty2 + y1y3), z2 = 2(ty1 + y2y3), z = t2 + y23 − y21 − y22.

Then z21 + z22 + z2 = 1, thus |z| 6 1. It follows from (2.2) that

ρA|PB(x)

(3.8)

=
I(1− sz tanhx) + (r − c3z tanhx)σ3 − [(z1a1 + z2b2)σ1 + (z2a2 − z1b1)σ2] tanhx

2(1− sz tanhx)

and ρA|PB(−x) is given by replacing x with −x in (3.8). Here p(±x) = 1
2(1∓ sz tanhx).
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The eigenvalues of ρA|PB(x) and ρA|PB(−x) are given by

λ±ρ
A|PB(x)

=
1− sz tanhx±

√
r2 − 2rzc3 tanhx+ θ tanh2 x

2(1− sz tanhx)
(3.9)

λ±ρ
A|PB(−x)

=
1 + sz tanhx±

√
r2 + 2rzc3 tanhx+ θ tanh2 x

2(1 + sz tanhx)
,(3.10)

where we have introduced a new variable θ by

(3.11) θ = z21 |c1|2 + z22 |c2|2 + 2z1z2|c1 × c2|+ c23z
2.

Recall that c1, c2 are given complex numbers, and c1 × c2 = (a1b2 − a2b1)
−→
k .

Note that formulas (3.9)-(3.10) always give real numbers as θ > c23z
2, and they also imply

that

r2 ± 2rzc3 tanhx+ θ tanh2 x 6 (1± sz tanhx)2,(3.12)

which shows that θ is bounded above.
To calculate the super quantum discord of ρAB using (2.2) and (2.3), we need to calculate

the classical correlation and minimize S(A|{PB(x)}) with respect to the weak measurements
{PB(±x)}. Using the formulas for the eigenvalues we find out that

(3.13) min
{PB(x)}

S(A|{PB(x)}) = 1 + min
z,θ

G(θ, z)

with

G(θ, z) =− 1

4
(1 + sz tanhx+R+) log2

1 + sz tanhx+R+

1 + sz tanhx

− 1

4
(1 + sz tanhx−R+) log2

1 + sz tanhx−R+

1 + sz tanhx

− 1

4
(1− sz tanhx+R−) log2

1− sz tanhx+R−
1− sz tanhx

− 1

4
(1− sz tanhx−R−) log2

1− sz tanhx−R−
1− sz tanhx

,

where R± =
√
r2 ± 2rc3z tanhx+ θ tanh2 x. The minimum is taken over a 2-dimensional

region such that |z| 6 1 and θ is implicitly bounded by (3.12).
Observe that G(θ,−z) = G(θ, z), so we only need to consider z ∈ [0, 1]. Furthermore, we

can reduce the optimization of the two variable function to that of one variable.

Lemma 3.1. Let b2 =
|c1|2+|c2|2+

√
(|c1|2−|c2|2)2+4|c1×c2|2

2 , then the minimum of the quantity

S(A|{PB(x)}) is given by

(3.14) min
{PB(x)}

S(A|{PB(x)}) = 1 + min
z∈[0,1]

F (z),
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where

F (z) =− 1

4
(1 + sz tanhx+H+) log2

1 + sz tanhx+H+

1 + sz tanhx

− 1

4
(1 + sz tanhx−H+) log2

1 + sz tanhx−H+

1 + sz tanhx

− 1

4
(1− sz tanhx+H−) log2

1− sz tanhx+H−
1− sz tanhx

− 1

4
(1− sz tanhx−H−) log2

1− sz tanhx−H−
1− sz tanhx

and H± =
√
b2(1− z2) tanh2 x+ (r ± c3z tanhx)2.

See Appendix for a proof.

Theorem 3.2. The super quantum discord of the general two qubit X-state ρAB is

SD(ρAB) =S(ρB)− S(ρAB) + min
{PB(x)}

S(A|PB(x))

=E(s) + E(c3) +
1 + c3

2
E(

√
(r + s)2 + |c1 − c2|2

1 + c3
)

+
1− c3

2
E(

√
(r − s)2 + |c1 + c2|2

1− c3
)− 3 + min

z∈[0,1]
F (z)(3.15)

where E(y) is the entropic function defined in (3.5) and F (z) is given by Lemma 3.1.

The above result essentially determines the quantum super discord completely, as it is
expressed as the minimum of one-variable function F (z) on [0, 1]. For a given x, the function
F (z) depends on the complex parameters c1, c2 and there real parameters r, s, c3, therefore
F (z) lives on a 7-dimensional manifold. Theorem 3.2 effectively reduces the parameters to
4 real ones b, c3, r, s together with the measurement parameter x. In the following we give
exact results for several nontrivial regions of the parameters of the quantum state ρAB.

Corollary 3.3. For the general two qubit X-type quantum state, the super quantum discord
is explicitly computed according to the following cases.

(a) If s tanhx > 0, rc3 tanhx 6 0 and c23 − b2 > src3, then the super quantum discord is
given by (3.15) with minz∈[0,1] F (z) = F (1), and

(3.16)

F (1) =− 1

4
(1 + r + (s+ c3) tanhx) log2

1 + r + (s+ c3) tanhx

1 + s tanhx

− 1

4
(1− r + (s− c3) tanhx) log2

1− r + (s− c3) tanhx

1 + s tanhx

− 1

4
(1 + r − (s+ c3) tanhx) log2

1 + r − (s+ c3) tanhx

1− s tanhx

− 1

4
(1− r − (s− c3) tanhx) log2

1− r − (s− c3) tanhx

1− s tanhx

(b) If s tanhx 6 0, rc3 tanhx > 0 and c23 − b2 > src3, then the super quantum discord is
given by the same formula as in (a).
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(c) If r = s = 0 and c23 ≤ b2, then the super quantum discord is given by (3.15) with
minz∈[0,1] F (z) = F (0), where

F (0) =E(b tanhx)− 1

=− 1

2
(1 + b tanhx) log2(1 + b tanhx)

− 1

2
(1− b tanhx) log2(1− b tanhx).

(3.17)

(d) If s = rc3, b2 = c23, and r2 + c23 tanh2 x ± rc3 tanhx ≥ 1, then the super quantum
discord is given by (3.15) where minz∈[0,1] F (z) = F (0), where

F (0) =E(
√
r2 + c23 tanh2 x)− 1

=− 1

2
(1 +

√
r2 + c23 tanh2 x) log2(1 +

√
r2 + c23 tanh2 x)

− 1

2
(1−

√
r2 + c23 tanh2 x) log2(1−

√
r2 + c23 tanh2 x).

(3.18)

See Appendix for a proof.
Remark. The above corollary shows that the super quantum discord is mostly determined

by F (1), but there are still other solutions not covered by this result. For example, Example
3 below is not covered by the above result, and cannot be solved by any existing algorithms.

It is imperative to find a new method to resolve the situation. The following formula will
fill up the gaps in the literature, and covers all the situations for the general X-state.

Theorem 3.4. The exceptional optimal points of F (z) are determined by the iterative
formula:

(3.19) ẑ = lim
n→∞

(zn −
F ′(zn)

F ′′(zn)
),

where

F ′(z) = − 1

4 ln 2

{
s tanhx ln

((1 + sz tanhx)2 −H2
+)(1− sz tanhx)2

((1− sz tanhx)2 −H2
−)(1 + sz tanhx)2

+H ′+ ln
1 + sz tanhx+H+

1 + sz tanhx−H+
+H ′− ln

1− sz tanhx+H−
1− sz tanhx−H−

}(3.20)

F ′′(z) = − 1

2 ln 2

{
(s2 tanh2 x+H ′2+ )(1 + sz tanhx)− 2s tanhxH+H

′
+

(1 + sz tanhx)2 −H2
+

+
(s2 tanh2 x+H ′2− )(1− sz tanhx) + 2s tanhxH−H

′
−

(1− sz tanhx)2 −H2
−

− 2s2 tanh2 x

1− s2z2 tanh2 x
+

1

2
H ′′+ ln

1 + sz tanhx+H+

1 + sz tanhx−H+
+

1

2
H ′′− ln

1− sz tanhx+H−
1− sz tanhx−H−

}
.(3.21)

As F ′(0) = F (3)(0), the iteration usually starts with z0 = 1.
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Example 1. Let ρ = 1
4(I+

∑3
i=1 ciσi⊗σi) be the Bell-diagonal state. Then r = s = 0. This

is a special case of Corollary 3.3, so the minimum of F (z) on [0, 1] is F (0) or F (1). If c23 ≥ b2,
then minz∈[0,1] F (z) = F (1) = −1

2(1+c3 tanhx) log2(1+c3 tanhx)− 1
2(1−c3 tanhx) log2(1−

c3 tanhx); If c23 ≤ b2, then minz∈[0,1] F (z) = F (0) = −1
2(1 + b tanhx) log2(1 + b tanhx) −

1
2(1− b tanhx) log2(1− b tanhx). Thus the super quantum discord of ρ is

SD(ρ) =
1

4
(1− c3 + c1 + c2) log2(1− c3 + c1 + c2)

+
1

4
(1− c3 − c1 − c2) log2((1− c3 − c1 − c2)

+
1

4
(1 + c3 + c1 − c2) log2((1 + c3 + c1 − c2)

+
1

4
(1 + c3 − c1 + c2) log2((1 + c3 − c1 + c2)

− 1

2
(1 + C tanhx) log2(1 + C tanhx)− 1

2
(1− C tanhx) log2(1− C tanhx).

(3.22)

This solution was first given in [14] with C = max{|c3|, |b|}.
Note that the Werner state ρ = a|ψ−〉〈ψ−| + 1−a

4 I, 0 ≤ a ≤ 1, is a special case with

r = s = 0, c3 = −a, c1 = c2 = −a. Here |ψ−〉 = (|01〉 − |10〉)/
√

2.

Example 2. Let ρ be the following density matrix:

(3.23)


0.437 0 0 0.100

0 0.154 0 0
0 0 0.037 0

0.100 0 0 0.372

 .

Here r = 0.182, s = −0.052, c3 = 0.618, c1 = 0.2, c2 = −0.2, so b = 0.2. One sees that this
belongs to Corollary 3.3 (a) and (b), so minz∈[0,1] F (z) = F (1). Fig.1 shows that F (z) as
a function of x ≥ 0 and z ∈ [0, 1], we can observe the behaviour of F (z) more intuitively.
The eigenvalues of ρ are λ1 = 0.509649, λ2 = 0.299351, λ3 = 0.154, λ4 = 0.037. Following
(3.15), the super quantum discord of ρ is given by

(3.24)

SD(ρ) =2− 1

2
(1 + s) log2(1 + s)− 1

2
(1− s) log2(1− s)

+
4∑
i=1

λi log2 λi + F (1) = 0.3899 + F (1).

where

F (1) =− 1

4
(1.182 + 0.566 tanhx) log2

1.182 + 0.566 tanhx

1− 0.052 tanhx

− 1

4
(0.818− 0.64 tanhx) log2

0.818− 0.64 tanhx

1− 0.052 tanhx

− 1

4
(1.182− 0.566 tanhx) log2

1.182− 0.566 tanhx

1 + 0.052 tanhx

− 1

4
(0.818 + 0.64 tanhx) log2

0.818− 0.64 tanhx

1 + 0.052 tanhx



SUPER QUANTUM DISCORD FOR GENERAL TWO QUBIT X STATES 9

Figure 1. The behaviour of F (z) for x ≥ 0 and z ∈ [0, 1] with parameters
r = 0.182, s = −0.052, c3 = 0.618, b = 0.2.

One can easily prove that F (1) is an even function of x, and when x ≥ 0, F (1) decreases
with increasing x. Which means the super quantum discord of this state ρ is a monotonically
decreasing function of the measurement strength. This is consistent with the Theorem.2
in [13].

Example 3. The following example cannot be solved by any of the currently available
algorithms until this paper. Using our new method, its exact solution is obtained as follows.
Consider the density matrix ρ given by

(3.25)


0.0783 0 0 0

0 0.1250 0.1000 0
0 0.1000 0.1250 0
0 0 0 0.6717

 .

In terms of the Bloch form, r = s = −0.5934, c3 = 0.5, c1 = c2 = 0.2, so b = 0.2. The
eigenvalues of ρ are λ1 = 0.025, λ2 = 0.0783, λ3 = 0.2250, λ4 = 0.6717. By symmetry, it
is enough to consider x > 0. The function F (z) in deciding the super quantum discord is
shown on the left side of Fig. 1 as a function of x ≥ 0 and z ∈ [0, 1]. The right side of
Fig. 2 shows contour pictures of F (z) by choosing x = 1, 2, 3, 4. The red dot on each line
is the minimum of F (z). The graphs reveal that the optimal point ẑ 6= 0, 1, which can also
be computed explicitly by (3.19). This example shows that the claim that the maximum is
always given at either z = 0 or z = 1 is incorrect (cf. [17]), see the third and fourth graphs
in Fig. 2 for more information.

For example, set x = 3. Starting with with z0 = 1, (3.19) gives that z1 = 0.8305, z2 =
0.6718, z3 = 0.5582, z4 = 0.4964, z5 = 0.4788, z6 = 0.477467, z7 = 0.4774675, z8 = 0.4774676 . . .,
thus ẑ = 0.47747 is the optimal point of F (z). It follows from (3.15) that the super quantum

discord of ρ is SD(ρ) = 2 − 1
2(1 + s) log2(1 + s) − 1

2(1 − s) log2(1 − s) +
∑4

i=1 λi log2 λi +
F (0.47747) = 0.1332.
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Similarly if x = 4, z0 = 1, (3.19) gives that z1 = 0.9042, z2 = 0.8561, z3 = 0.8467, z4 =
0.84638901, z5 = 0.846388659..., thus ẑ = 0.84639 is another critical point of F (z). Finally
the super quantum discord turns out to be SD(ρ) = 2− 1

2(1+s) log2(1+s)− 1
2(1−s) log2(1−

s) +
∑4

i=1 λi log2 λi + F (0.84639) = 0.1328.

Figure 2. The behaviour of F (z) for x ≥ 0 and z ∈ [0, 1] with parame-
ters r = −0.5934, s = −0.5934, c3 = 0.5, b = 0.2. The red dot on each line
represents the optimal point. The 3rd and 4th graphs show that the maxi-
mum is not given by z = 0 or z = 1, instead they are respectively given by
ẑ = 0.47747 and ẑ = 0.84639 as shown by the red dots.

4. DYNAMICS of SUPER QUANTUM DISCORD under PHASE DAMPING
CHANNEL

In this section, we discuss the behavior of the general 2-qubit X state ρAB through the

phase damping channels [20] with the Kraus operators {Ki}, where
∑

iK
†
iKi = 1. Under

the phase damping ρAB evolves into

(4.1) ρ̃AB =
∑
i,j∈1,2

KA
i ⊗KB

j · ρAB · (KA
i ⊗KB

j )†.

where the Kraus operators are given by K
A(B)
1 = |0〉 〈0| +

√
1− γ |1〉 〈1|, and K

A(B)
2 =√

γ |1〉 〈1|, with the decoherence rate γ ∈ [0, 1]. Thus we have

ρ̃ =
1

4
[I + c3σ3 ⊗ σ3 + sI ⊗ σ3 + rσ3 ⊗ I +

∑
i=1,2

ai(1− γ)σi ⊗ σi(4.2)

+b2(1− γ)σ1 ⊗ σ2 − b1(1− γ)σ2 ⊗ σ1],

The parameter γ also determines how severely the noise in the channel affects the super
quantum discord. Clearly, when γ = 0, super quantum discord is preserved. As we have
mentioned that the super quantum discord tends to decrease when the strength x increases
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[13, Th. 2]. It is interesting to see the behavior of SD(ρ̃) under the phase damping channel,
for example, how does the SQD of the X-state change for general γ?

(1) First we consider the Werner state ρ = a|ψ−〉〈ψ−|+ 1−a
4 I, a ∈ [0, 1]. Under the phase

damping channel, the Werner state ρ is changed into

(4.3) ρ̃ =
1

4
(I − aσ3 ⊗ σ3 − a(1− γ)

∑
i=1,2

σi ⊗ σi)

Then r = s = 0, c3 = −a, c1 = c2 = −a(1 − γ), b = |a(1 − γ)| (see Lemma 3.1). It follows
from c23 ≥ b2 that the super quantum discord of ρ̃ is

SD(ρ̃) =
1

4
(1 + a− 2a(1− γ)) log2(1 + a− 2a(1− γ))

+
1

4
(1 + a+ 2a(1− γ)) log2(1 + a+ 2a(1− γ)) +

1

2
(1− a) log2(1− a)

− 1

2
(1− a tanhx) log2(1− a tanhx)− 1

2
(1 + a tanhx) log2(1 + a tanhx).

(4.4)

Thus

SD(ρ)− SD(ρ̃) =
1

4
(1− a) log2(1− a) +

1

4
(1 + 3a) log2(1 + 3a)

− 1

4
(1 + a− 2a(1− γ)) log2(1 + a− 2a(1− γ))

− 1

4
(1 + a+ 2a(1− γ)) log2(1 + a+ 2a(1− γ)).

(4.5)

Set T (a, γ) = SD(ρ)− SD(ρ̃), which is a strictly increasing function of γ:

(4.6)
∂T (a, γ)

∂γ
=
a

2
log2(

1 + a+ 2a(1− γ)

1 + a− 2a(1− γ)
) ≥ 0.

Thus for fixed a ∈ [0, 1], the minimum of T (a, γ) takes place at γ = 0. Since T (a, 0) = 0,
we conclude that minT (a, γ) = 0. Therefore SD(ρ) ≥ SD(ρ̃), which implies that the super
quantum discord of the Werner state decreases under the phase damping channel.

(2) As another example, let us consider the state ρ discussed in Example 2. The state ρ
under phase damping channel is given by

(4.7) ρ̃ =
1

4
[I+0.618σ3⊗σ3−0.052I⊗σ3+0.182σ3⊗I+0.2(1−γ)σ1⊗σ1−0.2(1−γ)σ2⊗σ2].

Therefore, its Bloch form is given by r = 0.182, s = −0.052, c3 = 0.618, c1 = 0.2(1 −
γ), c2 = −0.2(1− γ), b = max{|c1|, |c2|} = 0.2(1− γ). After a simple calculation, we obtain
that the parameters in this case satisfy the conditions of Corollary 3.3 (a) and (b), thus the
minimum of F (z) is also F (1). From Theorem 3.2, we obtain that

SD(ρ̃) = SD(ρ),

which says that there are essentially no noises detected for this particular quantum state in
the phase damping channel for the super quantum discord in the final stage.
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(3) We consider the state ρ discussed in Example 3. From (4.2), the state ρ under phase
damping channel evolves into

(4.8) ρ̃ =
1

4
[I + 0.5σ3 ⊗ σ3 − 0.5934I ⊗ σ3 − 0.5934σ3 ⊗ I +

∑
i=1,2

0.2(1− γ)σi ⊗ σi].

Here r = s = −0.5934, c3 = 0.5, c1 = c2 = 0.2(1 − γ), so b = 0.2(1 − γ). From Example 3,
we find that when x = 4, the optimal point ẑ ∈ (0, 1), and that is, the minimum of F (z) is
F (ẑ) = F (0.8464). The SQD of the state ρ is exactly calculated in Ex.3.

Fig. 3 below illustrates F (z) as a function of z ∈ [0, 1] and γ ∈ [0, 1] with fixed parameters
r = −0.5934, s = −0.5934, c3 = 0.5, x = 4. The solid lines in the last graph from top to
bottom correspond to γ = 1, 0.7, 0.5, 0.3, 0.1 respectively. We find out that when parameter
γ ∈ (0, 1], the optimal point is z = 1, and F (1) > F (ẑ). From Theorem 3.2, we obtain
SD(ρ̃) ≥ SD(ρ), which means in this case the super quantum discord of the state ρ is
destroyed through the phase damping channel.

Figure 3. The solid lines in the last two graphs from top to bottom cor-
respond to γ = 1, 0.7, 0.5, 0.3, 0.1 respectively, for fixed parameters r =
−0.5934, s = −0.5934, c3 = 0.5, x = 4. The red dot is the optimal point.
Again the optimal is achieved not at endpoints.

These models show that usually the super quantum discord decreases as the decoherence
rate increases. However, there also exists an example when the super quantum discord is
stable through the whole process under damping channel.



SUPER QUANTUM DISCORD FOR GENERAL TWO QUBIT X STATES 13

5. Conclusions

In this paper we have derived an analytical solution for the super quantum discord of
the general two qubit X-states in terms of the minimum of certain one variable function
F (z) on [0, 1]. Although usually the super quantum discord is given by either F (0) or
F (1) (see Corollary 3.3), there are significantly many other cases. We have formulated an
effective algorithm to nail down theses exceptional cases, which have filled up the gap in the
literature for super quantum discords. Therefore our results have settled the problem of the
super quantum discord for the general two qubit X states. In general the super quantum
discord tends to increase or decrease under the phase damping channel, though there exists
some extreme case when the super quantum discord is invariant through the whole dynamic
process.
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Appendix

Proof of Lemma 3.1.
First we notice that G(θ, z) is a strictly decreasing function of θ:

∂G

∂θ
=− tanh2 x

8R+
log2(

1 + sz tanhx+
√
r2 + 2rc3z tanhx+ θ tanh2 x

1 + sz tanhx−
√
r2 + 2rc3z tanhx+ θ tanh2 x

)

− tanh2 x

8R−
log2(

1− sz tanhx+
√
r2 − 2rc3z tanhx+ θ tanh2 x

1− sz tanhx−
√
r2 − 2rc3z tanhx+ θ tanh2 x

)

<0.

Therefore there are no interior critical points and extremal points must lie on the boundary
of the domain. Since ∂G

∂θ < 0, we further conclude that minG takes place at the largest

value of θ for some z ∈ [0, 1]. As z21 + z22 + z2 = 1, we have that

θ = a2 + c23z
2

= z21 |c1|2 + z22 |c2|2 + 2z1z2|c1 × c2|+ c23z
2

6 (
|c1|2 + |c2|2 +

√
(|c1|2 − |c2|2)2 + 4|c1 × c2|2

2
)(z21 + z22) + c23z

2

= b2 + (c23 − b2)z2,

where b2 =
|c1|2+|c2|2+

√
(|c1|2−|c2|2)2+4|c1×c2|2

2

For each fixed z, the maximum value b2 + (c23 − b2)z2 can be achieved by appropriate
z1, z2. Therefore minG(z, θ) = minz∈[0,1]G(z, b2 + (c23 − b2)z2), which is explicitly given in
(3.14).

Proof of Theorem 3.2.
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We compute the derivative of F (z).
(5.1)

F ′(z) =− 1

4

(
s tanhx log2

1−A2
+

1−A2
−

+
rc3 tanhx+ (c23 − b2)z tanh2 x

1 + sz tanhx

1

A+
log2

1 +A+

1−A+

+
−rc3 tanhx+ (c23 − b2)z tanh2 x

1− sz tanhx

1

A−
log2

1 +A−
1−A−

)

where H ′±(z) = H−1± (±rc3 tanhx+ (c23 − b2)z tanh2 x) and A± =
H±

1± sz tanhx
∈ [0, 1].

Case (a). Since
(5.2)

A2
+ −A2

− =
H2

+

(1 + sz tanhx)2
−

H2
−

(1− sz tanhx)2

=
(1 + s2z2 tanh2 x)4rc3z tanhx− 4sz tanhx[(r2 + c23z

2 tanh2 x) + b2 tanh2 x(1− z2)]
(1− sz tanhx)2(1 + sz tanhx)2

Then the first term of F ′(z) ≤ 0 iff −s tanhx(A2
+ −A2

−) > 0, which holds if s tanhx > 0
and rc3 tanhx 6 0 or s tanhx 6 0 and rc3 tanhx > 0.

Note that g(x) =
1

x
ln

1 + x

1− x
is a strictly increasing function on (0, 1), as

g′(x) = − 1

x2
log2

1 + x

1− x
+

2

x ln 2

1

1− x2

=
2

x ln 2

( ∞∑
n=0

−x2n

2n+ 1
+
∞∑
n=0

x2n

)
> 0.

Therefore A+ > A− iff

(5.3)
1

A+
ln

1 +A+

1−A+
>

1

A−
ln

1 +A−
1−A−

.

(i) If s tanhx > 0, rc3 tanhx 6 0 and c23 − b2 > 0, it follows from (5.2) that A+ 6 A−,
then (5.3) implies that

F ′(z) 6− 1

4

(
rc3 tanhx+ (c23 − b2)z tanh2 x

1 + sz tanhx

1

A+
log2

1 +A+

1−A+

+
−rc3 tanhx+ (c23 − b2)z tanh2 x

1− sz tanhx

1

A−
log2

1 +A−
1−A−

)
6− 1

4

(
rc3 tanhx+ (c23 − b2)z tanh2 x

1 + sz tanhx
+
−rc3 tanhx+ (c23 − b2)z tanh2 x

1 + sz tanhx

)
1

A+
log2

1 +A+

1−A+

=− 1

2

(c23 − b2)z tanh2 x

1 + sz tanhx

1

A+
log2

1 +A+

1−A+
6 0.
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(ii) If s tanhx > 0, rc3 tanhx 6 0 and src3 ≤ c23 − b2 6 0 , we have that

F ′(z) 6− 1

4

(
rc3 tanhx+ (c23 − b2)z tanh2 x

1 + sz tanhx

1

A+
log2

1 +A+

1−A+

+
−rc3 tanhx+ (c23 − b2)z tanh2 x

1− sz tanhx

1

A−
log2

1 +A−
1−A−

)
6− 1

4

(
rc3 tanhx+ (c23 − b2)z tanh2 x

1 + sz tanhx
+
−rc3 tanhx+ (c23 − b2)z tanh2 x

1− sz tanhx

)
1

A−
log2

1 +A−
1−A−

=− 1

2

(−rc3s+ c23 − b2)z tanh2 x

(1− sz tanhx)(1 + sz tanhx)

1

A−
log2

1 +A−
1−A−

6 0.

Case (b) is treated in two subcases, (i) Suppose that s tanhx 6 0, rc3 tanhx > 0, and
c23 − b2 > 0, (ii) Suppose that s tanhx ≤ 0, rc3 tanhx > 0 and src3 ≤ c23 − b2 ≤ 0. We can
solve the problem by the same method as Case (a).

Case (c) If s = r = 0, then

F ′(z) = −2H−1+ (c23 − b2)z tanh2 x log2
1 +H+

1−H+
.

Therefore minF (z) is F (0) according to c23 ≤ b2 or not. Thus, the minimum of F (z) on
z ∈ [0, 1] is F (0).

Case (d). If s = rc3, b
2 = c23, and r2 + c23 tanhx±rc3 tanhx ≥ 1, it follows from (5.2) that

the first term F ′(z) ≥ 0.

Let k(z) = rc3 tanhx
H(z) log2

1+sz tanhxz+H(z)
1+sz tanhxz−H(z) , where H(z) =

√
r2 + b2 tanh2 x+ 2sz tanhx.

Then

F ′(z) ≥− rc3 tanhx

4H+(z)
log2

1 + sz tanhx+H+

1 + sz tanhx−H+
− −rc3 tanhx

4H−(z)
log2

1− sz tanhx+H−
1− sz tanhx−H−

=− 1

4
(k(z)− k(−z)).(5.4)

As a function of z we have that H ′(z) = s tanhx
H(z) , H ′′(z) = − s2 tanh2 x

H3(z)
and

k′(z) = H ′′(z) log2
1 + sz tanhx+H(z)

1 + sz tanhx−H(z)
+

s tanhx

H(z) ln 2

(
s tanhx+H ′(z)

1 + sz tanhx+H(s)
− s tanhx−H ′(z)

1 + sz tanhx−H(z)

)
= −s

2 tanh2 x

H3(z)
log2

1 + sz tanhx+H(z)

1 + sz tanhx−H(z)
+

2s2 tanh2 x

H2(z) ln 2

1− sz tanhx− r2 − b2 tanh2 x

(1 + sz tanhx)2 −H2(z)
≤ 0,

the inequality holds because

r2 + c23 tanh2 x± rc3 tanhx ≥ 1.

Similarly k′(−z) ≤ 0, thus −1
4(k′(z) + k′(−z)) ≥ 0, which implies that F ′(z) ≥ 0.

Therefore the minimum of F (z) on z ∈ [0, 1] is F (0).
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