Skip to main content
Log in

Efficient entanglement concentration of arbitrary unknown less-entangled three-atom W states via photonic Faraday rotation in cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an efficient entanglement concentration protocol (ECP) for nonlocal three-atom systems in an arbitrary unknown less-entangled W state, resorting to the Faraday rotation of photonic polarization in cavity quantum electrodynamics and the systematic concentration method. In the first step of the present ECP, one party in quantum communication performs a parity-check measurement on her two atoms in two three-atom systems for dividing the composite six-atom systems into two groups. In the first group, the three parties will obtain some three-atom systems in a less-entangled state with two unknown coefficients. In the second group, they will obtain some less-entangled two-atom systems. In the second step of the ECP, the three parties can obtain a subset of three-atom systems in the standard maximally entangled W state by exploiting the above three-atom and two-atom systems. Moreover, the preserved systems in the failed instances can be used as the resource for the entanglement concentration in the next round. The total success probability of the ECP can therefore be largely increased by iterating the entanglement concentration process several rounds. The distinct feature of our ECP is that we can concentrate arbitrary unknown atomic entangled W states via photonic Faraday rotation, and thus it may be universal and useful for entanglement concentration in future quantum communication network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68(5), 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722 (1996)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046 (1996)

    Article  ADS  Google Scholar 

  8. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77(13), 2818 (1996)

    Article  ADS  Google Scholar 

  9. Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410(6832), 1067–1070 (2001)

    Article  ADS  Google Scholar 

  10. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89(25), 257901 (2002)

    Article  ADS  Google Scholar 

  11. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77(4), 042308 (2008)

    Article  ADS  Google Scholar 

  12. Wang, C., Zhang, Y., Jin, G.S.: Polarization-entanglement purification and concentration using cross-Kerr nonlinearity. Quantum Inf. Comput. 11(11–12), 988–1002 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Cao, C., Wang, C., He, L.Y., Zhang, R.: Polarization-entanglement purification for ideal sources using weak Cross-Kerr nonlinearity. Int. J. Theor. Phys. 52(4), 1265–1273 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81(3), 032307 (2010)

    Article  ADS  Google Scholar 

  15. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044305 (2010)

    Article  ADS  Google Scholar 

  16. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(4), 044304 (2010)

    Article  ADS  Google Scholar 

  17. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(6), 062316 (2011)

    Article  ADS  Google Scholar 

  18. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60(1), 194 (1999)

    Article  ADS  Google Scholar 

  19. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62(5), 054301 (2000)

    Article  ADS  Google Scholar 

  20. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64(1), 014301 (2001)

    Article  ADS  Google Scholar 

  21. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64(1), 012304 (2001)

    Article  ADS  Google Scholar 

  22. Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90(20), 207901 (2003)

    Article  ADS  Google Scholar 

  23. Yamamoto, T., Koashi, M., Özdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421(6921), 343–346 (2003)

    Article  ADS  Google Scholar 

  24. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77(6), 062325 (2008)

    Article  ADS  Google Scholar 

  25. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85(1), 012307 (2012)

    Article  ADS  Google Scholar 

  26. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85(2), 022311 (2012)

    Article  ADS  Google Scholar 

  27. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. Cao, Z.L., Yang, M.: Probabilistic teleportation of unknown atomic state using W class states. Phys. A 337(1), 132–140 (2004)

    Article  Google Scholar 

  29. Koike, S., Takahashi, H., Yonezawa, H., Takei, N., Braunstein, S.L., Aoki, T., Furusawa, A.: Demonstration of quantum telecloning of optical coherent states. Phys. Rev. Lett. 96(6), 060504 (2006)

    Article  ADS  Google Scholar 

  30. Fortescue, B., Lo, H.K.: Random bipartite entanglement from W and W-like states. Phys. Rev. Lett. 98(26), 260501 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Fortescue, B., Lo, H.K.: Random-party entanglement distillation in multiparty states. Phys. Rev. A 78(1), 012348 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Augusiak, R., Horodecki, P.: W-like bound entangled states and secure key distillation. Europhys. Lett. 85(5), 50001 (2009)

    Article  ADS  Google Scholar 

  33. Wang, H.F., Zhang, S., Yeon, K.H.: Linear optical scheme for entanglement concentration of two partially entangled three-photon W states. Eur. Phys. J. D 56(2), 271–275 (2010)

    Article  ADS  Google Scholar 

  34. Wang, H.F., Zhang, S., Yeon, K.H.: Linear-optics-based entanglement concentration of unknown partially entangled three-photon W states. JOSA B 27(10), 2159–2164 (2010)

    Article  ADS  Google Scholar 

  35. Gu, B.: Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics. JOSA B 29(7), 1685–1689 (2012)

    Article  ADS  Google Scholar 

  36. Gu, B., Quan, D.H., Xiao, S.R.: Multi-photon entanglement concentration protocol for partially entangled W states with projection measurement. Int. J. Theor. Phys. 51(9), 2966–2973 (2012)

    Article  MATH  Google Scholar 

  37. Du, F., Deng, F.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China Phys. Mech. Astron. 58(4), 1–8 (2015)

    Article  Google Scholar 

  38. Xiong, W., Ye, L.: Schemes for entanglement concentration of two unknown partially entangled states with cross-Kerr nonlinearity. JOSA B 28(8), 2030–2037 (2011)

    Article  ADS  Google Scholar 

  39. Sun, L.L., Wang, H.F., Zhang, S., Yeon, K.H.: Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity. JOSA B 29(4), 630–634 (2012)

    Article  ADS  Google Scholar 

  40. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85(4), 042302 (2012)

    Article  ADS  Google Scholar 

  41. Du, F.F., Li, T., Ren, B.C., Wei, H.R., Deng, F.G.: Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity. JOSA B 29(6), 1399–1405 (2012)

    Article  ADS  Google Scholar 

  42. Zhou, L., Sheng, Y.B., Zhao, S.M.: Optimal entanglement concentration for three-photon W states with parity check measurement. Chin. Phys. B 22(2), 020307 (2013)

    Article  ADS  Google Scholar 

  43. Sheng, Y., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58(6), 1–11 (2015)

    Article  Google Scholar 

  44. Wang, T.J., Long, G.L.: Entanglement concentration for arbitrary unknown less-entangled three-photon W states with linear optics. JOSA B 30(4), 1069–1076 (2013)

    Article  ADS  Google Scholar 

  45. Du, F.F., Deng, F.G.: Systematic entanglement concentration for unknown less-entangled three-photon W states. Laser Phys. Lett. 12(11), 115202 (2015)

    Article  ADS  Google Scholar 

  46. An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A 79(3), 032303 (2009)

    Article  ADS  Google Scholar 

  47. Chen, Q., Feng, M.: Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process. Phys. Rev. A 79(6), 064304 (2009)

    Article  ADS  Google Scholar 

  48. Koshino, K., Ishizaka, S., Nakamura, Y.: Deterministic photon-photon SWAP gate using a system. Phys. Rev. A 82(1), 010301 (2010)

    Article  ADS  Google Scholar 

  49. Song, J., Xia, Y., Song, H.S.: Quantum gate operations using atomic qubits through cavity input–output process. EPL (Europhys. Lett.) 87(5), 50005 (2009)

    Article  ADS  Google Scholar 

  50. Chen, J.J., An, J.H., Feng, M., Liu, G.: Teleportation of an arbitrary multipartite state via photonic Faraday rotation. J. Phys. B At. Mol. Opt. Phys. 43(9), 095505 (2010)

    Article  ADS  Google Scholar 

  51. Chen, Q., Feng, M.: Quantum-information processing in decoherence-free subspace with low-Q cavities. Phys. Rev. A 82(5), 052329 (2010)

    Article  ADS  Google Scholar 

  52. Yang, M., Zhao, Y., Song, W., Cao, Z.L.: Entanglement concentration for unknown atomic entangled states via entanglement swapping. Phys. Rev. A 71(4), 044302 (2005)

    Article  ADS  Google Scholar 

  53. Cao, Z.L., Zhang, L.H., Yang, M.: Concentration for unknown atomic entangled states via cavity decay. Phys. Rev. A 73(1), 014303 (2006)

    Article  ADS  Google Scholar 

  54. Ogden, C.D., Paternostro, M., Kim, M.S.: Concentration and purification of entanglement for qubit systems with ancillary cavity fields. Phys. Rev. A 75(4), 042325 (2007)

    Article  ADS  Google Scholar 

  55. Wang, H.F., Zhang, S.: Scheme for realizing deterministic entanglement concentration with atoms via cavity QED. Int. J. Theor. Phys. 48(6), 1678–1687 (2009)

    Article  MATH  Google Scholar 

  56. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21(4), 4093–4105 (2013)

    Article  ADS  Google Scholar 

  57. Cao, C., Wang, C., He, L.Y., Tong, X., Lei, M., Zhang, R.: Optimal atomic entanglement concentration using coherent-state inputCoutput process in low-Q cavity quantum electrodynamics system. JOSA B 30(8), 2136–2141 (2013)

    Article  ADS  Google Scholar 

  58. Li, T., Yang, G.J., Deng, F.G.: Entanglement distillation for quantum communication network with atomic-ensemble memories. Opt. Express 22(20), 23897–23911 (2014)

    Article  ADS  Google Scholar 

  59. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84(3), 032307 (2011)

    Article  ADS  Google Scholar 

  60. Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86(1), 012323 (2012)

    Article  ADS  Google Scholar 

  61. Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12(5), 1885–1895 (2013)

    Article  ADS  MATH  Google Scholar 

  62. Wang, C., Cao, C., He, L.Y., Zhang, C.L.: Hybrid entanglement concentration using quantum dot and microcavity coupled system. Quantum Inf. Process. 13(4), 1025–1034 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Wang, C., Zhang, Y., Lei, M., Jin, G.S., Ma, H.Q., Zhang, R.: Nonlocal entanglement concentration of separate nitrogen-vacancy centers coupling to microtoroidal resonators. Quantum Inf. Comput. 14(1–2), 107–121 (2014)

    MathSciNet  Google Scholar 

  64. Cao, C., Ding, H., Li, Y., Wang, T.J., Mi, S.C., Zhang, R., Wang, C.: Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quantum Inf. Process. 14(4), 1265–1277 (2015)

    Article  ADS  MATH  Google Scholar 

  65. Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86(3), 034305 (2012)

    Article  ADS  Google Scholar 

  66. Peng, Z.H., Zou, J., Liu, X.J., Kuang, L.M.: Optimal entanglement concentration via photonic Faraday rotation in cavity QED. Opt. Commun. 313, 365–368 (2014)

    Article  ADS  Google Scholar 

  67. Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14(4), 1305–1320 (2015)

    Article  ADS  MATH  Google Scholar 

  68. Wang, H.F., Sun, L.L., Zhang, S., Yeon, K.H.: Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED. Quantum Inf. Process. 11(2), 431–441 (2012)

    Article  MATH  Google Scholar 

  69. Zhang, R., Zhou, S., Cao, C.: Efficient nonlocal two-step entanglement concentration protocol for three-level atoms in an arbitrary less-entangled W state using cavity input-output process. Sci. China Phys. Mech. Astron. 57(8), 1511–1518 (2014)

    Article  ADS  Google Scholar 

  70. Luo, M.X., Li, H.R., Wang, X.: Efficient atomic and photonic multipartite W state concentration via photonic faraday rotation. Eur. Phys. J. D 68(7), 1–7 (2014)

    Article  ADS  Google Scholar 

  71. Cao, C., Chen, X., Duan, Y., Fan, L., Zhang, R., Wang, T., Wang, C.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China Phys. Mech. Astron. 59(10), 100315 (2016)

    Article  Google Scholar 

  72. Fei, S.M.: Entanglement concentration of W-class states on nonlocal atoms using low-Q optical cavity. Sci. China Inf. Sci. 59(12), 128501 (2016)

    Article  Google Scholar 

  73. Sheng, Y.B., Zhou, L.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. JOSA B 30(3), 678–686 (2013)

    Article  ADS  Google Scholar 

  74. He, L.Y., Cao, C., Wang, C.: Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system. Opt. Commun. 298, 260–266 (2013)

    Article  ADS  Google Scholar 

  75. Sheng, Y., Liu, J., Zhao, S., Zhou, L.: Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin. Sci. Bull. 58(28–29), 3507–3513 (2013)

    Article  Google Scholar 

  76. Cao, C., Wang, T.J., Zhang, R., Wang, C.: Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator. JOSA B 32(7), 1524–1531 (2015)

    Article  ADS  Google Scholar 

  77. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73(3), 565 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Walther, H., Varcoe, B.T., Englert, B.G., Becker, T.: Cavity quantum electrodynamics. Rep. Progress Phys. 69(5), 1325 (2006)

    Article  ADS  Google Scholar 

  79. Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for BoseCEinstein condensates in an optical cavity on a chip. Nature 450(7167), 272–276 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61471050, 61377097, and 11404031), the Fundamental Research Funds for the Central Universities (Nos. 2015RC28 and 2016RC40), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) (Nos. IPOC2015ZT05 and IPOC2016ZT02), and the innovation laboratory, School of Ethnic Education, Beijing University of Posts and Telecommunications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Fan, L., Chen, X. et al. Efficient entanglement concentration of arbitrary unknown less-entangled three-atom W states via photonic Faraday rotation in cavity QED. Quantum Inf Process 16, 98 (2017). https://doi.org/10.1007/s11128-017-1549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1549-3

Keywords

Navigation