Skip to main content
Log in

Entanglement teleportation via thermal Wannier edge states in a chiral graphene nanoribbon

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the entanglement teleportation via thermal Wannier edge states in a chiral graphene nanoribbon described by the effective Heisenberg model. The results show that in order to realize quantum teleportation the channel entanglement must be larger than a critical minimum value which depends on the entanglement of the initial input state. We also show that the teleportation fidelity is approximately close to the maximum at lower temperature. In particular, if Coulomb repulsion among electrons is smaller than 1.2 eV, the average fidelity will be larger than 2/3 even at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  3. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: Advances in quantum teleportation. Nat. Photonics 9, 641 (2015)

    Article  ADS  Google Scholar 

  4. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  5. Brassard, G., Braunstein, S.L., Cleve, R.: Teleportation as a quantum computation. Phys. D 120, 43 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amp, D.G., Chuang, I.L., Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390 (1999)

    Article  ADS  Google Scholar 

  7. VanLoock, P., Braunstein, S.L.: Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett. 84, 3482 (2000)

    Article  ADS  Google Scholar 

  8. Yonezawa, H., Aoki, T., Furusawa, A.: Demonstration of a quantum teleportation network for continuous variables. Nature 431, 430 (2004)

    Article  ADS  Google Scholar 

  9. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  10. Yin, J., Ren, J.G., Lu, H., Cao, Y., Yong, H.L., Wu, Y.P., Liu, C., Liao, S.K., Zhou, F., Jiang, Y.: Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185 (2012)

    Article  ADS  Google Scholar 

  11. Ma, X.S., Herbst, T., Scheidl, T., Wang, D., Kropatschek, S., Naylor, W., Wittmann, B., Mech, A., Kofler, J., Anisimova, E.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269 (2012)

    Article  ADS  Google Scholar 

  12. Boozer, A.D., Boca, A., Miller, R., Northup, T.E., Kimble, H.J.: Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)

    Article  ADS  Google Scholar 

  13. Nölleke, C., Neuzner, A., Reiserer, A., Hahn, C., Rempe, G., Ritter, S.: Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013)

    Article  Google Scholar 

  14. Krauter, H., Salart, D., Muschik, C.A., Petersen, J.M., Shen, H., Fernholz, T., Polzik, E.S.: Deterministic quantum teleportation between distant atomic objects. Nat. Phys. 9, 400 (2012)

    Article  Google Scholar 

  15. Bao, X.H., Xu, X.F., Li, C.M., Yuan, Z.S., Lu, C.Y., Pan, J.W.: Quantum teleportation between remote atomic-ensemble quantum memories. Proc. Natl. Acad. Sci. USA 109, 20347 (2012)

    Article  ADS  Google Scholar 

  16. Pfaff, W., Hensen, B.J., Bernien, H., van Dam, S.B., Blok, M.S., Taminiau, T.H., Tiggelman, M.J., Schouten, R.N., Markham, M., Twitchen, D.J.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gao, W.B., Fallahi, P., Togan, E., Delteil, A., Chin, Y.S., Miguel-Sanchez, J., Imamoğlu, A.: Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013)

    ADS  Google Scholar 

  18. Krance, R.A., Kuehnle, I., Rill, D.R., Mei, Z., Pinetta, C., Evans, W., Brown, M.P., Pulé, M., Heslop, H.E., Brenner, M.K.: Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photonics 8, 775 (2014)

    Article  Google Scholar 

  19. Tanaka, T., Sunden, Y., Sakoda, Y., Kida, H., Ochiai, K., Umemura, T.: Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319 (2013)

    Article  Google Scholar 

  20. Rossignoli, R., Canosa, N.: Global thermal entanglement in n-qubit systems. Phys. Rev. A 72, 012335 (2005)

    Article  ADS  Google Scholar 

  21. Zhang, R., Zhu, S.: Thermal entanglement in a two-dimensional Heisenberg XY model. Phys. Lett. A 348, 110 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Li, D., Wang, X.: Thermal entanglement in the anisotropic Heisenberg XXZ model with the Dzyaloshinskii–Moriya interaction. J. Phys. Condens. Matter 20, 325229 (2008)

    Article  Google Scholar 

  23. Li, D.C., Cao, Z.L.: Thermal entanglement in the anisotropic Heisenberg XYZ model with different Dzyaloshinskii–Moriya couplings. Chin. Phys. Lett. 26, 20309 (2009)

    Article  Google Scholar 

  24. Gong, S.S., Su, G.: Thermal entanglement in one-dimensional Heisenberg quantum spin chains under magnetic fields. Phys. Rev. A 80, 012323 (2009)

    Article  ADS  Google Scholar 

  25. Rojas, O., Rojas, M., Ananikian, N.S., de Souza, S.M.: Thermal entanglement in an exactly solvable Ising-XXZ diamond chain structure. Phys. Rev. A 86, 042330 (2012)

    Article  ADS  Google Scholar 

  26. Mehran, E., Mahdavifar, S., Jafari, R.: Induced effects of the Dzyaloshinskii–Moriya interaction on the thermal entanglement in spin-1/2 Heisenberg chains. Phys. Rev. A 89, 042306 (2014)

    Article  ADS  Google Scholar 

  27. Yeo, Y.: Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain. Phys. Rev. A 66, 062312 (2002)

    Article  ADS  Google Scholar 

  28. Li, C., Wang, C., Guo, G.: Entanglement and teleportation through thermal equilibrium state of spins in the XXZ model. Opt. Commun. 260, 741 (2006)

    Article  ADS  Google Scholar 

  29. Zhang, Y., Long, G.L., Wu, Y.C., Guo, G.C.: Partial teleportation of entanglement through natural thermal entanglement in two-qubit Heisenberg XXX chain. Commun. Theor. Phys. 47, 787 (2007)

    Article  ADS  Google Scholar 

  30. Zhang, G.F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  31. Cai, J., Abliz, A., Zhang, G., Bai, Y.: Effects of Dzyaloshinskii–Moriya interaction on thermal entanglement and teleportation via a two-qubit Heisenberg XXZ spin chain under external magnetic field. Opt. Commun. 283, 4415 (2010)

    Article  ADS  Google Scholar 

  32. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  33. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  34. Press, D., Ladd, T., Zhang, B., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218 (2008)

    Article  ADS  Google Scholar 

  35. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  36. Trauzettel, B., Bulaev, D.V., Loss, D., Burkard, G.: Spin qubits in graphene quantum dots. Nat. Phys. 3, 192 (2007)

    Article  Google Scholar 

  37. Pedersen, T.G., Flindt, C., Pedersen, J., Mortensen, N.A., Jauho, A., Pedersen, K.: Graphene antidot lattices: designed defects and spin qubits. Phys. Rev. Lett. 100, 136804 (2008)

    Article  ADS  Google Scholar 

  38. Guo, G., Lin, Z., Tu, T., Cao, G., Li, X., Guo, G.: Quantum computation with graphene nanoribbon. New J. Phys. 11, 123005 (2009)

    Article  ADS  Google Scholar 

  39. Schmidt, M.J., Golor, M., Lang, T.C., Wessel, S.: Effective models for strong correlations and edge magnetism in graphene. Phys. Rev. B 87, 245431 (2013)

    Article  ADS  Google Scholar 

  40. Barnes, T., Dagotto, E., Riera, J., Swanson, E.S.: Excitation spectrum of Heisenberg spin ladders. Phys. Rev. B 47, 3196 (1993)

    Article  ADS  Google Scholar 

  41. Greven, M., Birgeneau, R.J., Wiese, U.J.: Monte Carlo study of correlations in quantum spin ladders. Phys. Rev. Lett. 77, 1865 (1996)

    Article  ADS  Google Scholar 

  42. Poilblanc, D.: Entanglement spectra of quantum Heisenberg ladders. Phys. Rev. Lett. 105, 77202 (2010)

    Article  ADS  Google Scholar 

  43. O’Connor, K.M., Wootters, W.K.: Entangled rings. Phys. Rev. A 63, 052302 (2001)

    Article  ADS  Google Scholar 

  44. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  45. Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  46. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Massar, S., Popescu, S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Cornelie Koop and Manuel J. Schmidt for illuminating discussions. This work was supported by the National Natural Science Foundation of China (Nos. 51420105003, 11327901, 61274114, and 11525415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Litao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, XD., Liao, XP. & Sun, L. Entanglement teleportation via thermal Wannier edge states in a chiral graphene nanoribbon. Quantum Inf Process 16, 114 (2017). https://doi.org/10.1007/s11128-017-1563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1563-5

Keywords

Navigation