Skip to main content
Log in

Entanglement generation and entanglement concentration of two-photon four-dimensional spatial modes partially entangled Dicke state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Two-photon four-dimensional spatial modes partially entangled Dicke state can be compactly generated from six concurrent spontaneous parametric down-conversion processes by cascading poling domain structures in 5% MgO-doped poled lithium niobate bulk crystal. Entanglement concentration of the two-photon four-dimensional spatial modes partially entangled Dicke state can be realized by using quantum nondestructive detection of nonlinear Kerr medium, optical beam splitter, and quantum gate operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Ekert, A.K.: Quantum cryptography. Sci. Am. 267, 50–57 (1992)

    Article  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  4. Yuan, Z.S., Chen, Y.A., Zhao, B., Chen, S., Schmiedmayer, J., Pan, J.W.: Entanglement demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)

    Article  ADS  Google Scholar 

  5. Zhang, H., Jin, X.M., Yang, J., Dai, H.N., Yang, S.J., Zhao, T.M., Rui, J., He, Y., Jiang, X., Yang, F., Pan, G.S., Yuan, Z.S., Deng, Y., Chen, Z.B., Bao, X.H., Chen, S., Zhao, B., Pan, J.W.: Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat. Photonics 5, 628–632 (2011)

    Article  ADS  Google Scholar 

  6. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76(5), 722–725 (1996)

    Article  ADS  Google Scholar 

  8. Wang, T.J., Liu, L.L., Zhang, R., Cao, C., Wang, C.: One-step hyperentanglement purification and hyperdistillation with linear optics. Opt. Express 23(7), 9284–9294 (2015)

    Article  ADS  Google Scholar 

  9. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature (London) 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  10. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  11. Salart, D., Landry, O., Sangouard, N., Gisin, N., Herrmann, H., Sanguinetti, B., Simon, C., Sohler, W., Thew, R.T., Thomas, A., Zbinden, H.: Purification of single-photon entanglement. Phys. Rev. Lett. 104, 180504 (2010)

    Article  ADS  Google Scholar 

  12. Sangouard, N., Simon, C., Coudreau, T., Gisin, N.: Purification of single-photon entanglement with linear optics. Phys. Rev. A 78, 050301 (2008)

    Article  ADS  Google Scholar 

  13. Sheng, Y.B., Deng, D.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  14. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  15. Sheng, Y.B., Deng, D.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  16. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  17. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22(6), 6547–6561 (2014)

    Article  ADS  Google Scholar 

  18. Ren, B.C., Long, G.L.: Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates. Sci. Rep. 5, 16444 (2015)

    Article  ADS  Google Scholar 

  19. Liu, H.J., Xia, Y., Song, J.: Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf. Process 15(5), 2033–2052 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996)

    Article  ADS  Google Scholar 

  21. Papp, S.B., Choi, K.S., Deng, H., Lougovski, P., Enk, S.J., Kimble, H.J.: Characterization of multipartite entanglement for one photon shared among four optical modes. Science 324(5928), 764–768 (2009)

    Article  ADS  Google Scholar 

  22. Lougovski, P., Enk, S.J., Choi, K.S., Papp, S.B., Deng, H., Kimble, H.J.: Verifying multipartite mode entanglement of W states. New J. Phys. 11, 063029 (2009)

    Article  ADS  Google Scholar 

  23. Xu, H.B., Du, K., Qiao, C.F.: Proposal for a new scheme for producing a two-photon, high dimensional hyperentangled state. J. Mod. Opt. 59, 1265 (2012)

    Article  ADS  Google Scholar 

  24. Shi, J., Xu, P., Zhong, M.L., Gong, Y.X., Bai, Y.F., Yu, W.J., Li, Q.W., Jin, H., Zhu, S.N.: Heralded generation of multipartite entanglement for one photon by using a single two-dimensional nonlinear photonic crystal. Opt. Express 21(7), 7875–7881 (2013)

    Article  ADS  Google Scholar 

  25. Jin, H., Xu, P., Luo, X.W., Leng, H.Y., Gong, Y.X., Yu, W.J., Zhong, M.L., Zhao, G., Zhu, S.N.: Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal. Phys. Rev. Lett. 111(2), 023603 (2013)

    Article  ADS  Google Scholar 

  26. Yu, X.Q., Xu, P., Xie, Z.D., Wang, J.F., Leng, H.Y., Zhao, J.S., Zhu, S.N., Ming, N.B.: Transforming spatial entanglement using a domain-engineering technique. Phys. Rev. Lett. 101, 233601 (2008)

    Article  ADS  Google Scholar 

  27. Leng, H.Y., Yu, X.Q., Gong, Y.X., Xu, P., Xie, Z.D., Jin, H., Zhang, C., Zhu, S.N.: On-chip steering of entangled photons in nonlinear photonic crystals. Nat. Commun. 2, 429 (2011)

    Article  ADS  Google Scholar 

  28. Xu, P., Zhu, S.N.: Review article: quasi-phase-matching engineering of entangled photons. AIP Adv. 2, 041401 (2012)

    Article  ADS  Google Scholar 

  29. Gong, Y.X., Xu, P., Shi, J., Chen, L., Yu, X.Q., Xue, P., Zhu, S.N.: Generation of polarization-entangled photon pairs via concurrent spontaneous parametric down conversions in a single \(\chi \)(2) nonlinear photonic crystal. Opt. Lett. 37(21), 4374–4376 (2012)

    Article  ADS  Google Scholar 

  30. Thyagarajan, K., Lugani, J., Ghosh, S., Sinha, K., Martin, A., Ostrowsky, D.B., Alibart, O., Tanzilli, S.: Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides. Phys. Rev. A 80, 052321 (2009)

    Article  ADS  Google Scholar 

  31. Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93(1), 99–110 (1954)

    Article  ADS  MATH  Google Scholar 

  32. Kiesel, N., Schmid, C., Tóth, G., Solano, E., Weinfurter, H.: Experimental observation of four-photon entangled dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)

    Article  ADS  Google Scholar 

  33. Zhao, Y.Y., Wu, Y.C., Xiang, G.Y., Li, C.F., Guo, G.C.: Experimental violation of the local realism for four-qubit Dicke state. Opt. Express 23(23), 30491–30496 (2015)

    Article  ADS  Google Scholar 

  34. Chakraborty, K., Choi, B.S., Maitra, A., Maitra, S.: Efficient quantum algorithms to construct arbitrary Dicke states. Quantum Inf. Process 13, 2049 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Mlynek, J.A., Abdumalikov Jr., A.A., Fink, J.M., Steffen, L., Baur, M., Lang, C., van Loo, A.F., Wallraff, A.: Demonstrating W-type entanglement of Dicke states in resonant cavity quantum electrodynamics. Phys. Rev. A 86, 053838 (2012)

    Article  ADS  Google Scholar 

  36. Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287 (1985)

    Article  ADS  Google Scholar 

  37. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  38. Chuang, I.L., Yamamoto, Y.: Quantum bit regeneration. Phys. Rev. Lett. 76, 4281 (1996)

    Article  ADS  Google Scholar 

  39. Howell, John C., Yeazell, John A.: Nondestructive single-photon trigger. Phys. Rev. A. 62, 032311 (2000)

    Article  ADS  Google Scholar 

  40. Gayer, O., Sacks, Z., Galum, E., Arie, A.: Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO\(_{3}\). Appl. Phys. B 91, 343 (2008)

    Article  ADS  Google Scholar 

  41. Liu, Z.W., Du, Y., Liao, J., Zhu, S.N., Zhu, Y.Y., Qin, Y.Q., Wang, H.T., He, J.L., Zhang, C., Ming, N.B.: Engineering of a dual-periodic optical superlattice used in a coupled optical parametric interaction. J. Opt. Soc. Am. B 19, 1676 (2002)

    Article  ADS  Google Scholar 

  42. Shi, J., Yun, S.J., Bai, Y.F., Xu, P., Zhu, S.N.: Compact generation of palarization-frequency hyperentangled photon pairs by using quasi-phase-matched lithium niobate. Opt. Commun. 285, 5549 (2012)

    Article  ADS  Google Scholar 

  43. Berger, V.: Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136 (1998)

    Article  ADS  Google Scholar 

  44. Ralph, T.C., Resch, K.J., Gilchrist, A.: Efficient Toffoli gates using qudits. Phys. Rev. A. 75, 022313 (2007)

    Article  ADS  Google Scholar 

  45. Mičuda, M., Sedlák, M., Straka, I., Miková, M., Dušek, M., Ježek, M., Fiurášek, J.: Efficient experimental estimation of fidelity of linear optical quantum Toffoli gate. Phys. Rev. Lett. 111, 160407 (2013)

    Article  ADS  Google Scholar 

  46. Sun, Q., Ye, L.: Implementing Toffoli gate via weak cross-Kerr nonlinearity and classical feedback. Mod. Phys. Lett. B 29, 1550032 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (11604115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J. Entanglement generation and entanglement concentration of two-photon four-dimensional spatial modes partially entangled Dicke state. Quantum Inf Process 16, 132 (2017). https://doi.org/10.1007/s11128-017-1583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1583-1

Keywords

Navigation