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Abstract Quantum games with incomplete information can be studied within a Bayesian
framework. We consider a version of prisoner’s dilemma (PD) in this framework with
three players and characterize the Nash equilibria. A variation of the standard PD
game is set up with two types of the second prisoner and the first prisoner plays with
them with probability p and 1− p respectively. The Bayesian nature of the game man-
ifests in the uncertainty that the first prisoner faces about his opponent’s type which
is encoded either in a classical probability or in the amplitudes of a wave function.
Here, we consider scenarios with asymmetric payoffs between the first and second
prisoner for different values of the probability, p, and the entanglement. Our results
indicate a class of Nash equilibria (NE) with rich structures, characterized by a phase
relationship on the strategies of the players. The rich structure that can be exploited
by the referee to set up rules of the game to push the players towards a specific class of
NE. These results provide a deeper insight into the quantum advantages of Bayesian
games over their classical counterpart.

1 Introduction

Game theory as a sub field in mathematics [1] has enjoyed a tremendous growth and
has been applied to wide range of fields such as economics [2], political science [3],
biology [4], and computer science [5]. The successful application of the theory in
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the classical context inspired formulation of quantum games [6]. One key feature of
a quantum game is that there are an infinite number of strategies possible, which
can potentially lead to far more equilibria. In quantum game theory, concepts from
quantum information theory are applied to game theory such that qubits represent the
states of each player, quantum gates (unitaries) are used for implementing strategies,
and entanglement is used to mediate communication between the players. Consid-
erable interest was generated in this field when the quantization of a classical game
using the Eisert-Wilkens-Lewenstein (EWL) formalism [7] showed that the classi-
cal prisoner’s dilemma (PD) could be resolved by including a new quantum strategy
that is not available in the classical game. We employ the EWL formalism primar-
ily because it is widely used in the literature. This formalism quantizes the strategy
space of a classical game as opposed to other approaches where the payoff function is
quantized [8], which can be advantageous for directly comparing a quantum game to
mixed strategy classical games. Extension of a classical game into a quantum context
gives rise to entirely new classes of games, depending on how that extinsion is made,
and our focus here is again on games based on EWL formalism. There is also dis-
tinction between quantizing a classical game and gaming a quantum system [12] as
the former is concerned with applying quantum information to game theory, with the
goal to learn something about the game that is produced, whereas the latter applies
the rules of game theory to quantum physics, with the goal of learning something
about the underlying physics. Our approach is the former.

In this work we are focused on quantizing classical Bayesian games that have
players with incomplete knowledge about the payoff functions of their opponents.
The uncertainty in knowledge of the players is encoded in types and priors or be-
liefs as classical probability distributions on types. Formally, a classical two person
Bayesian game is a tuple (Ω×Ω ,ρ×ρ,A×A,X,F) where, Ω ,A represent the state
and action spaces of the player, X is space of types from which nature assigns one
member for each player. Lack of knowledge on the types makes this space a random
variable and each player has priors or beliefs about it in the form of a probability dis-
tribution on it which is encoded in the probability measure ρ . This results in players
choosing a strategy from A conditioned on the types and the cost function F is a map-
ping on A×X→ R. Later, we describe the quantum version of this Bayesian set up,
where the priors are still classical but Ω and A are based on quantum information.
Our approach is similar in spirit to the quantized Bayesian game of battle of sexes
[13] where the probabilities are calculated in accordance with quantum mechanics
and the priors are classical, however, their approach relies only on probability dis-
tributions, our approach retains the quantum mechanical formalisms of state vectors
and operators.

The primary advantage a quantum game has over its classical counterpart may
be seen in the case of PD. When the initial state is maximally entangled, and the
strategy space is restricted to those in the original (EWL) formalism [7], the payoff
for the players at the Nash equilibrium (NE) in the quantum game exceeds the payoff
of the players at the NE in the classical counterpart. The NE is the set of strategies
where no player can benefit by unilaterally changing their strategy. It is possible in
the classical game for the prisoners to choose strategies corresponding to a Pareto
efficient (PE) solution which gives higher payoff than the NE, though this is only
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with cooperation or a contract, which require communication and can be broken. A
PE solution is a set of strategies where no player can benefit without, unilaterally or
not, hurting the other.

A second key feature of quantum games is that the player’s initial states can be
entangled. Though we only look at non-cooperative games where the players act
rationally and only in their self interest, the entanglement can ensure that the out-
come of the player’s strategy choices are correlated in a quantum mechanical way.
Once established, these correlations persist even if the players cannot communicate,
exhibiting the non-local characteristic of quantum mechanics. In some cases, the cor-
relations produced from entanglement cannot be described classically. The role of
entanglement in a quantum game has been interpreted as a form of advice, contract,
or mediated communication between the players [14], and is given by the referee.
However, in contrast to classical game theory, the advice or contract is established
before the players make their strategy choices by using an initial entangled state, af-
ter which, there is no communication between the players, and they are physically
prohibited from breaking the contract. Entanglement can also be thought of as an
environment that acts to correlate the player’s choices, since the entanglement is im-
posed by the referee.

The solutions to the game can vary greatly with the amount of entanglement such
that new NE form with partial entanglement that are different from those at maximal
entanglement or zero entanglement, or can also lead to the complete absence of a
NE for an entangled game even when the classical game has a NE, such as in the
maximally entangled PD game[15]. Games with mixed strategies, that is, when the
players choose the strategies with a probability, always have NE solutions, but may
not have mixed strategy solutions for every possible probability distribution on the
payoff functions. In other words there are distributions over the payoff functions that
are not in the image of the mixed version of the original clasical game. One possible
way to extend the games to realize other probability distributions over the payoff
functions is to set up games where the strategies of the players are correlated by some
form of advice or mediated communication. On the other hand, quantum games can
realize every possible probability distribution on payoff functions through the use of
entanglement which can facilitate correlated strategies. In fact, given one player’s
strategy the other player can choose strategies such that any possible distribution on
the payoff function can be achieved[8], which can lead to the absense of NE in certain
cases, such as in the maximally entangled PD game.

When there is incomplete information available to the players involved, the game
can be treated using a Bayesian approach [16]. This produces a game that is a classical
mixture of two quantum games. Bayesian games have seen interest because they can
be easily formulated to show a quantum advantage. This can be done by leveraging
Bell’s inequalities such that the payoff function of the game is cast in terms of the
expectation values of observables employed in a form of a Bell’s inequality. Thus, by
using quantum correlations, a higher payoff at the NE can be achieved than is possible
using only classical correlations. This shows the advantage for quantum games when
the payoff function has the form of a Bell’s inequality [17,18]. We wish to study
Bayesian games in a more general framework in order to shed light on how the non-
local advice via the entanglement, functions in a game with incomplete information.
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The ability to include multiple agents, allowance for incomplete information,
and the incorporation of game theory concepts such as fairness or equilibria make
quantum Bayesian games a useful tool for quantum network, which features entan-
gled qubits shared non-locally across multiple nodes. When interacting with multiple
agents on a network, a game theory analysis is often justified because agents are typ-
ically free to make their choices in their best interests, perhaps mitigated by some
referee. It is also often the case in interacting with multiple agents on a network,
that the players will have incomplete information about the other agents, which ra-
tionalizes the approach to include a classical Bayesian framework for prior informa-
tion on a quantum game. The utilization of quantum games on a quantum network
could potentially be used in applications such as the analysis of the quantum security
protocols[19], the development of distributed quantum computing algorithms[20], or
using non-locally shared quantum information to improve the efficiency of classical
network algorithms [21]. In addition there have been several experimental imple-
mentations of the two-player PD game within this framework using nuclear magnetic
resonance [9], quantum circuits in optical [10], and ion-trap platforms [11].

The structure of the paper is as follows. In Section 2 we introduce the classical
game we wish to quantize and summarize its solutions. In Section 3 we give some of
the theoretical background necessary to employ a Bayesian game within a quantum
probability space. In Section 4 we give details of the method we employ to find the so-
lutions to the quantized game, where we vary the degree of entanglement and amount
of incomplete information. In Section 5 we present solutions to the two-player games
where we find that the structure of each NE is comprised of a class of strategy choices
related to one another by a phase relationship, giving rise to a class of NE between
the two players. In Section 6 we analyze the quantum Bayesian game and find that the
NE form a phase-diagram like structure in the amount of entanglement, and amount
of incomplete information. The NE are found to have a complex and sometimes sur-
prising structure within this phase diagram. Finally we offer a discussion of what our
results tell us about the role of entanglement and partial information in a quantum
Bayesian game in Section 7, and end with some conclusions.

2 Classical game background

The Bayesian game we considered here is a variation of PD, the District Attorneys
(DA’s) brother, which involves three players, or equivalently, represents a situation
where player B does not know what type player A is. In the first case, player A and
B play the standard PD game. In the second case, player B believes player A is the
DA’s brother which gives player A an advantage resulting in an asymmetric payoff
between the players.

First, we consider a version of the two-player PD game that is slightly modified
from the canonical formulation such that the players have asymmetric payoffs. This
has the payoff matrix given by:

A|B1 |0〉(C) |1〉(D)

|0〉(C) (11,9) (1,10)
|1〉(D) (10,1) (6,6)
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The payoff is computed for example, if A’s qubit is measured to be in |0〉 and
B1’s is measured in |1〉, then player A receives a payoff of 1, and player B1 receives
a payoff of 10.

The interpretation of the classical game is that two prisoners, A and B1, are given
the choice to implicate the other player in a crime, or to remain silent. Their classical
strategy choices, are to defect or cooperate (implicate/remain silent), which we label
D/C, with their payoff (i.e. jail sentence) determined by their joint choices. A higher
payoff represents less time in jail. If they both play C, then neither admits to the
crime, and their sentence is light, i.e. payoffs of 11 and 9 in our example. If they
both implicate the other in the crime, that is, play strategy D, they receive a higher
sentence both have payoff of 6. If one prisoner plays D while the other plays C, the
player who plays D receives a payoff of 10 while the player who plays C receives
the harshest sentence with a payoff of 1. The classical game has the NE of (D,D),
even though the Pareto-optimal choice would be (C,C) where both players would do
better.

The second two-player game we analyze is the two-player DA’s brother game.
The payoff matrix for this game is shown below.

A|B1 |0〉(C) |1〉(D)

|0〉(C) (11,9) (1,6)
|1〉(D) (10,1) (6,0)

The payoffs for player A are identical to that in the PD game, though player B’s
are slightly changed. The interpretation of the classical DA brother’s game is that
player B2’s payoffs change because player A is the DA’s brother, and player B2 is
afraid that if he remains silent, i.e. plays D, he will get more time in jail (i.e. lower
payoff).

Classically, this game has the NE of (C,C), where players A and B2 receive payoffs
11 and 9 respectively, which are in this case, Pareto-optimal.

The Bayesian game follows the protocol by Harsanyi [22]. The Bayesian game is
played between player A, and either player B1 or B2, with some probability p. This
game can be interpreted as player A playing with either player B1 or B2 with the
probability p, or as a between two players, A and B, with incomplete information,
parametrized by p, where there are two types of player B, where type 1 believes A is
not the DA’s brother, and type 2 believes he is.

The payoff for player A is given by the weighted average of playing with B1 and
B2:

〈$A(A,B1)〉(p)+ 〈$A(A,B2)〉(1− p) (1)

Whereas the payoff for the B players is given by 〈$B1(A,B1)〉 and 〈$B2(A,B2)〉.
Classically, the Bayesian game has two NE depending on p. Player B1 has the

dominant strategy D, while player B2’s dominant strategy is C. If player A cooperates,
his payoff is (1p+11(1− p)), but if he plays D, his payoff is (6p+10(1− p)). If we
assume that the B players always play their dominant strategies, then player A will
play C if p < 1/6 and will play D if p > 1/6. Thus, the NE for p < 1/6 is (C, D, C)
with payoffs (11−10p,10,9) and for p> 1/6 is (D, D, C) with payoffs (10−4p,6,1)
for players (A,B1,B2) respectively.
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3 Quantum Bayesian game theory background

The important aspects of a Bayesian game, namely, facility for cooperation, advice
from a referee, the role of nature in introducing partial information, and a constraint to
make the game fair, can be made precise in mathematical terms. Quantum probability
spaces [23] are used to describe game situations [24] in which players have to choose
strategies to maximize their payoffs in a cooperative or non-cooperative manner.

Let H be a Hilbert space with finite dimension and states are positive operators
with unit trace denoted by P . A quantum probability space is defined by the tuple
(H,P(H),P) where P(H) is the set of projections on H. In this framework, the ex-
pectation of an observable X in the state P is defined using the trace as Tr{PX} or
notationally as P(X). This notation is justified because a quantum state is a gener-
alization of probabilistic measure. Here, we describe a space for a two-player game
with incomplete information to perform Bayesian type of reasoning. In Bayesian
games, nature plays a role by assigning a type to each player.

Let (C 2⊗C 2,A⊗A,P , X) be a quantum probability space where P is an en-
tangled state such as |Ψ−〉 = (|0〉A |1〉B−|1〉A |0〉B)/

√
2, A is the *-algebra of Pauli

operators, and X is a set of types each individual player gets from nature. The lack of
knowledge on the type received by the other players forces the players to act with in-
complete information, thus requiring Bayesian strategies. It can be shown that when
the payoff function is of the following form, closely resembling Bell’s inequality,
non-classical correlations have an advantage [16]:

Cost function = P(A1,B1)+P(A1,B2)+P(A2,B1)−P(A2,B2),Ai,Bi ∈ A.

The non-classical correlation, can be thought of as a piece of advice received by
each player from the referee who also makes the final measurements and computes
the payoffs, between spatially separated entities. The expectation values of the two
players outcomes must respect a no-signaling condition that can be defined as fol-
lows:

P(A1|X1,X2) = ∑
A2

P(A1,A2|X1,X2) = P(A1|X1). (2)

In other words, in the absence of instantaneous communication, the marginal proba-
bility distribution of player A is independent of the type of player B when we take the
types as X1 = Type 1 and X2 = Type 2. This means the statistics of advice received
by player A is independent of type assigned to player B and vice versa, a require-
ment that would make it a fair game. This condition can be guaranteed by entangling
spatially separated states that would prevent instant signaling of the types as part of
respecting causality so as not to violate special relativity. In the games considered
here the *-algebra is abelian as the observables used in cost functions are compatible
whereas the games considered in [24] are based on more general non-commutative
algebra of operators.

4 Solution methods

We analyze a Bayesian game constructed from the two-player quantum game as
shown in Fig. 1. We give details of the solution of the two-player games first. We
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Fig. 1 The quantum circuit for the two-player PD game. Both players qubits are initialized to the |0〉
state, followed by an entangling operation, J, that depends on the parameter γ . Then the players apply
their strategy choice, UA,B(θ ,φ ,α), which is followed by an un-entangling operation. The payoffs are
determined from the final state |ψ f 〉.

use the EWL quantization scheme[7]. In this scheme, qubits that represents the states
of individual players are initialized to |0〉 followed by an entangling operation Ĵ.
Next, each player makes a strategy choice Û . Finally the conjugate transpose of the
entangling operation is applied so that if the players do not take any action, the ini-
tial state is recovered. At the end of the circuit, the qubits for the two players are
measured by the referee and the payoffs are awarded depending on the outcome of
the measurement. Because the results of the measurement are probabilistic, all com-
puted payoffs are expectation values. In order to compare the quantum game with the
classical version, we can make a correspondence between the outcome |0〉 and the
classical ‘cooperate’ (C) strategy, (i.e. Û = Î2, where Î2 is the identity operator) and
|1〉 with the ‘defect’ (D) strategy (i.e. Û = σ̂X , the Pauli-X operator) and compute the
payoff using the tables given in Section 2.

In the Bayesian game we analyze, there is one type of player A and two types of
player B, (i.e. B1 and B2). Player A plays the game shown in Fig. 1 with either B1 or
B2 depending on a probability p ∈ [0,1]. Player A’s payoff is the weighted average
of playing with B1 and B2, and the B players payoff is normalized by the probability
with which they play against player A.

The structure of an un-entangling gate that can be used to define a game has well
understood characteristics [25]. To compare with other results, we use the commonly
found form for our entangling operation:

Ĵ(γ) = eiγσ̂x⊗σ̂x =


Cos(γ/2) 0 0 ı Sin(γ/2)

0 Cos(γ/2) −ı Sin(γ/2) 0)
0 −ı Sin(γ/2) Cos(γ/2) 0

ı Sin(γ/2) 0 0 Cos(γ/2)

 (3)

The parameter γ ∈ [0,π/2] defines the amount of entanglement. There is no en-
tanglement when γ = 0, (i.e. Ĵ(0) = Î4), and when γ = π/2, produces a maximally
entangled Bell state when operated on the initial state such that Ĵ(π/2) · |00〉 =
1/
√

2(|00〉+ ı |11〉).
Though many quantum games are analyzed in a restricted strategy space, it has

been pointed out that the solutions to the games are very different if the strategy
space is not restricted [26]. The strategies we use are given by a single arbitrary
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SU(2) rotation of a qubit. This choice allows for any pure strategy. Although the
global phase of the two-qubit state is not physical, the relative phase of one qubit
with respect to the other is. In order to be fair, we keep the potential strategy choices
of the two players symmetric and thus we must specify each player’s strategy choices
with three parameters (θ ,φ ,α) given by the matrix:

Û(θ ,φ ,α) =

(
e−ıφCos(θ/2) eıα Sin(θ/2)
−e−ıα Sin(θ/2) eıφCos(θ/2)

)
(4)

where θ ∈ [0,π],φ ∈ [0,2π],α ∈ [0,2π]. Because we will employ a numerical so-
lution method, this range of parameters is discretized into a finite number of strategy
choices for analysis, as is discussed below.

The outcome of the circuit in Fig. 1 is given by:

|ψ f (A,B)〉= Ĵ†(UA⊗UB)Ĵ |00〉 (5)

If the payoff for a player A, $A is given by a vector in the normal form two-qubit
representation (i.e (|00〉 , |01〉 , |10〉 , |11〉), which is derived from the payoffs in the
left side of the bracket in the payoff matrices given in Section 2, then the expectation
value of the payoff is given by:

〈$A(A,B)〉= ∑
j

〈
ψ f (A,B)

∣∣ψ f (A,B)
〉

j $A
j (6)

with analogous expressions for the other players.
To solve for the NE of the game, we use the method of best responses. Analytical

solutions have been constructed for the symmetric two-player PD game [27] which
allow one to compute the best response to a given strategy choice of an opponent.
However, despite our solutions ultimately having a relatively simple representation,
an extension of the analytic solution to include asymmetric payoffs and a Bayesian
framework with three players remains elusive. In order to have a method of solution
that computes all NE of a game, and can easily be used to compare to other payoff
matrices (including asymmetric payoffs) in the two-player game and a three-player
game, we adopt a numerical approach. Similar to a method that has been used to
analyze two-player games and partially analyze a Bayesian game [29].

We discretize the parameters of the strategy matrix to make list of all possible
strategy choices. For example, if step through θ ,φ , and α in steps of δθ = δφ =
δα = π/8, the list of strategy choices defines the strategy space, S :

S ={Û(0,0,0),Û(0,0,π/8),Û(0,0,2π/8)...

Û(π,2π,6π/8),Û(π,2π,7π/8),Û(π,2π,2π)}
(7)

Due to the definition of Eq. 4, there are several matrices that become redundant be-
cause, for example, when θ = 0, α is undefined.

Next, we construct the best response function for each player, BA,B with a brute-
force method. This is done by computing all of the payoffs for a player against every
possible strategy choice of his opponents within S , and selecting the response with
the highest payoff. For player A, for example, this gives a response function in the
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form, BA = {Û∗Aj ,ÛB
j } , where j runs over all possible strategy choices in Eq. 7 and

Û∗Aj is A’s best response to B’s strategy choice j. When this is done for all players, if if
the intersection of the best-responses is non-empty, (Û∗Ak ,ÛB

k ) = (ÛA
k ,Û

∗B
k ) for some

k where (Û∗Ak ,ÛB
k ) ∈BA and (ÛA

k ,Û
∗B
k ) ∈BB, the intersection of the best response

curves is a NE.
In analyzing games whose strategy choices are defined by descritazations of

Equation 4, the numerical analysis becomes impractical. For example, the parameters
(∆θ ,∆φ ,∆α) = (π/8,π/8,π/8) yield 1824 unique strategy choices. The computa-
tion of all solutions to a two-player game for all values of entanglement for these
parameters took nearly an hour, making solutions to the Bayesian game impractical
with the current method. We find that the major structures of the games are already
captured using the parameters (∆θ ,∆φ ,∆α) = (π,π/2,π/2), which produces a total
of eight unique strategy choices. The solutions to these games yielded zero, one, or
two unique Nash equilibria, differing by a phase relationship, as will be described
below. For games with zero or one Nash equilibrium, the further discretized strategy
space yielded no additional solutions. For games with two Nash equilibria, the fur-
ther discretization of the strategy space resulted in what appeared to be a continuoum
of solutions bounded by the two original solutions. The structure and understanding
of this continuoum of solutions is the subject of further study that will be reported
elsewhere[28]. For the remainder of our analysis, the strategy cohices is restricted to
the set defined by the stepping parameters (∆θ ,∆φ ,∆α) = (π,π/2,π/2).

5 Two-player game results

For the quantum game, we compute the NE as a function of the entanglement param-
eter γ and report the payoff to each player at the NE. As has been seen in previous
analyses, there exists a NE for low values of entanglement, and the payoff for both
players increases as the entanglement increases, until the entanglement reaches a crit-
ical value above which there is no NE. Though these results have been reported be-
fore, for completeness, we show the results of our calculation in Fig. 2. Our threshold
for entanglement is around γ = 1.15, above which there is no NE. This matches the
prediction from the analytic result for the symmetric prisoner’s dilemma game [27]
if, instead of the asymmetric case we have, we compute the analytic results for payoff
for the outcome |00〉 for both players to be 9.

Each point on the NE plot actually represents a class of NE with an infinite set of
strategy choices, all of which have the same payoff. The NE shown in Fig. 2 has the
values of θA = θB1 = π . This means that the value of φ is not defined. The value of
αA can take any value as long as the phase difference between A and B1 takes one
of two values, such that αB1 = −αA + {π/2,3π/2}. The interpretation of this is the
global phase of the two qubit system is not physical, so one of the overall phases is
free, while the phase of the other qubit must keep a fixed relationship to the phase
of the first. Another way to represent the strategy choice matrices of the NE is as the
outer product of Pauli matrices, σ̂X ⊗ σ̂Y . Though this simple representation does not
describe the freedom of the overall phase, it is useful when comparing the quantum
strategies to the classical strategies and is added to increase physical intuition. The



10 Neal Solmeyer et al.

Fig. 2 Payoff for asymmetric, two-player PD game. The line represents the class of NE with θA = θB1 = π .
At γ = 0 the payoff at the classical (D,D) NE is recovered. As the entanglement is increased, the payoff
increases until γ = 1.15, above which there are no Nash equilibrium which is consistent with earlier results
that pure strategy NE is absent with maximal entanglement.

Fig. 3 Payoff for asymmetric, DA’s brother game. The NE labeled EDA1 has the structure θA = θB1 = 0,
and is independent of the amount of entanglement. The second NE with θA = θB1 = π , EDA2, does not
exist below γ = 0.55 and approaches EDA1 as γ approaches π/2. Here pure strategy NE is possible with
maximal entanglement due to the fact the NE of the classical game is Pareto efficient.

strategy choices σ̂X and σ̂Y both resemble the classical strategy choice D because
they swap the initial state |0〉 to |1〉, although their α values differ. The symmetry
of the strategy choices in the NE of the quantum game are indicative of the classical
NE, and when there is no entanglement, γ = 0, the game maps onto the classical PD
game such that the payoff is identical to the (D,D) NE in the classical PD.

In the quantum version of the DA’s brother game, in addition to the multiplicity
of solutions in a NE class, the solutions gave two stable NE with different payoffs.
In the parametrization of the strategies described in Eqn. 4, the first NE (EDA1 of Fig.
3) is given by θA = θB1 = 0 and phase relationship φB2 = −φA + {0,π}, where α is
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undefined when θ = 0, and can be represented by the product of operators Î2⊗ Î2.
The NE EDA1 is constant and exists for all values of entanglement, and is equivalent
to the classical NE.

A second NE (EDA2), which has no classical counterpart, appears as the entangle-
ment is increased above γ = 0.55. This payoff has the structure θA = θB1 = π and
phase relationship αB2 = −αA + {π/2,3π/2}, where φ is undefined at θ = π . This
has the Pauli matrix representation σ̂X ⊗ σ̂Y . This NE has smaller initial payoffs, but
increases towards the (C,C) payoff as the entanglement increases to a maximum of
γ = π/2. It is notable that at maximal entanglement, this game has two competing
NE with strategy choices differing by more than just a phase relationship, and that
have equal payoffs.

6 Bayesian game results

The solutions to the quantum Bayesian game could be computed by probabilistically
combining two versions of the two-player circuit shown in Fig 1. However, in order
to present a fully quantum formalism, this game can alternatively be encoded in the
quantum circuit shown in Fig. 4. Where the entangling operations are now controlled
operations such that A is entangled with B1 or B2 depending on the state of a control
qubit Q. That is, if Q is |0〉, then Ĵ entangles qubits A and B1, where if Q is |1〉, then
Ĵ entangles A and B2. These are represented in the 3-qubit representation as:

Ĵ1 =

(
Î2 0̂
0̂ Ĵ

)
and Ĵ2 =

(
Ĵ 0̂
0̂ Î2

)
(8)

Where Ĵ1 acts on qubits in the normal representation (Q,A,B1), Ĵ2 acts on qubits
(Q,A,B2), Ĵ is given by Eqn. 3, and 0̂ is a 4×4 matrix of zeros.

Allowing ÛQ to be any arbitrary qubit rotation allows the circuit to realize any
value of p such that p = Sin2(θQ/2) At the end of the game, the control qubit is
measured, and the payoff is computed depending on the state of Q. A superposition
of the control qubit has A play the games with B1 and B2 in parallel.

From the Bayesian game circuit of Fig. 4, it might appear that using an arbitrary
rotation on the control qubit allows us to reach behavior that is not captured by taking
a statistical mixture of the games with B1 and B2. However, in practice, we find that
the full quantum circuit behaves the same as the statistical mixture, and depends only
on the θ , i.e. population, of the control qubit.

The results for the quantum Bayesian game are plotted for γ ∈ [0,π/2] and p ∈
[0,1], and are shown in Fig. 5. Along the axis with γ = 0 the results of the quantum
game contain the results of the classical game, there are two distinct NE, the payoff
of the B players depends only on which NE is being played, and the payoff of player
A changes linearly with p for both NE.

Extending this out into γ 6= 0 the parameter space is broken up into several re-
gions resembling a phase diagram. Some of the regions have a single NE, some have
several, and others have none. The different NE behave differently as functions of γ

or p, as will be described below. As can be seen along the left side of the graph where
P = 1, the result is identical to Fig. 2, as A plays solely with B1, and along the right
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Fig. 4 Quantum circuit for implementing a Bayesian game. Q is the control qubit, ÛQ defines the proba-
bility p. The entangling operations are controlled entangling operations such that if the control qubit, Q, is
in |0〉, then qubits A and B1 are entangled, where as if Q is |1〉, then qubits A and B2 are entangled

Fig. 5 Payoff for Bayesian game between A, B1 and B2. The red curve represents the payoff at NE for
player A, the blue curve represents player B1 and the green curve represents B2. Along the axis with p = 1,
the curve is identical to the game in Fig. 2, and where p = 0, it is identical to Fig. 3. The above view on the
right hand side identifies the regions where E1-E4 exist, where they overlap, and where there are no NEs.

side of the graph where p = 0, the results are identical to Fig. 3 as player A plays
solely with B2. There are 4 distinct NE in this curve.

The first NE (E1) exists in the interval p ∈ [1,0.7] and γ ∈ [0,0.55] and also exists
along the line with γ = 0 between p ∈ [0,0.25]. This equilibrium has the structure
(θA,θB1,θB2) = (π,π,0) with phase relationships αB1 = αA−{π/2,3π/2} and φB2 =
αA−{π/2,3π/2}, and can be represented by the operators σ̂Y ⊗ σ̂X ⊗ σ̂Z .

It should be noted that the operator representations are not unique, because of
the possibility of the varying phase relationship between the strategy choices, but
they are give more intuition than the parameter representation. The operator repre-
sentation of NEs for the Bayesian PD game is similar to that of mixed strategies
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two players quantum PD where the they are shown to have support on Pauli matri-
ces [15]. The symmetry of the NE strategy choices in the operator representation is
suggestive of the (D, D, C) classical NE, as both σ̂Y and σ̂X have the symmetry of
a spin flip which changes the initial cooperate strategy to defect. Similarly, both σ̂Z
and the identity operator have the symmetry of the identity operator, which leaves the
cooperate strategy unchanged. The relative phase relationships between the player’s
strategy choices determines which of the operators with the same symmetry are used
in the operator representation.

The payoff at E1 increases in payoff for the three players as the entanglement is
increased. As a function of p, player B1 and B2’s payoff are constant while player
A’s payoff increases linearly as p decreases. It is interesting to note that, in the small
values of γ , the NE disappears below p = 0.7, long before the second NE takes over
as p < 1/6, leaving a gap where there is no NE. It is also notable that the classical
γ = 0 game has a NE for p ∈ [.17,0.7], whereas for any value of entanglement in the
region γ ∈ (0, .55], there is none.

The constant NE of the two-player DA’s brother game forms a second NE (la-
beled E2) and exists for small p values, but ceases to exist for ∼ p > 0.15. This is
intuitive since player A is mostly playing with player B2, so their behavior dominates
the structure of the equilibria, with player B1 playing his best response to their strate-
gies at equilibria, which notably, is the highest payoff of all players in the region
of p ∈ [0.07,0.15]. The payoff of this NE, and its extent along the p axis are both
independent of γ . Player B1 and B2’s payoffs are constant at 10 and 9 respectively.
A’s payoff decreases linearly as p is increased from 11 at p = 0 to 9 at p ∼ 0.15.
E1 has the structure (θA,θB1,θB2) = (0,π,0). It has the phase relationships given by
αB1 = φA−{0,π} and φB2 = φA−{0,π}. E2 can be represented by the operators
Î2⊗ σ̂Y ⊗ Î2, which is suggestive of the classical NE (C, D, C).

When γ > 0.5, a third NE (E3) occurs with the structure (θA,θB1,θB2) = (π,π,π)
with phase relationships αB1 = αA−{π/2,3π/2} and αB2 = αA−{π/2,3π/2}, and
can be represented by the operators σ̂Y ⊗ σ̂X ⊗ σ̂X . E3 looks in payoff like it is the
continuation of E2 in the region p∈ [1,0.7], only with player B2 changing his strategy.
Though the intuitive interpretation of player A and player B1’s strategy choices map
onto their classical two-player NE (D, D), since player B2 changes his strategy from
E1, this represents a NE that doesn’t occur in the classical version of the game. There
are more NEs of type E3 than others, as the phase relationship between the strategies
is the most flexible indicating that the more opportunities to cooperate, the larger then
number of equilibria.

A fourth NE (E4) exists with the structure (θA,θB1,θB2) = (π,0,π) with phase
relationships φB1 = αA−{π/2,3π/2} and αB2 = αA−{π/2,3π/2}, and can be rep-
resented by the operators σ̂Y ⊗ σ̂Z ⊗ σ̂X . E4 has a small range of p ∼∈ [0,0.2] and
γ ∼∈ [1.2,1.45]. There is a small region of parameter space near p∼ .2 and γ ∼ 1.2,
where this is the only NE. In this small region, player B1 has the highest payoff,
followed by A and then by B2.

The results describing the parameters of the strategies of the various NE are sum-
marized in Tables 1 and the range as well as operator representations are summarized
in Table 2.
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{θA,θB1,θB2} {φA,φB1,φB2} {αA,αB1,αB2}
E1 {π,π,0} { /0, /0,X−{π/2,3π/2}} {X ,X−{π/2,3π/2}, /0}
E2 {0,π,0} {X , /0,X−{0,π}} { /0,X−{0,π}, /0}
E3 {π,π,π} { /0, /0, /0} {X ,X−{π/2,3π/2},X−{π/2,3π/2}}
E4 {π,0,π} { /0,X−{π/2,3π/2}, /0} {X , /0,X−{π/2,3π/2}}

Table 1 Summary of the strategy parameters of the NE of the three-person Bayesian game. /0 means that
the parameter is undefined. X means that the parameter can take any value, so long as the parameters of
the other players obey a given phase relationship.

Range (p) Range (γ) Operator representation
E1 [0.7,1] [0,0.55] σ̂Y ⊗ σ̂X ⊗ σ̂Z
E ∗1 [0,0.25] 0 σ̂Y ⊗ σ̂X ⊗ σ̂Z
E2 [0,0.15] [0,π/2] Î2⊗ σ̂Y ⊗ Î2
E3 [0,1] [0.55,1.1] σ̂Y ⊗ σ̂X ⊗ σ̂X
E4 [0,0.2] [1.2,1.45] σ̂Y ⊗ σ̂Z ⊗ σ̂X

Table 2 Summary of the ranges of E1-E4 and their operator representation. The operator representation
is not unique, and is only one of the possible strategy choices of player A and one of the possible phase
relationships to player B

In addition, there are two blocks of parameter space where there are no NE. They
are given by p ∈ [0.2,1.0] and γ ∈ [π/2,1.15] and in the region p ∈ [0.2,0.7] and
γ ∈ (0,0.55].

7 Discussion

The interpretation of a NE is that by playing rationally, the players in a game will tend
towards playing the NE strategy choices. The NE is stable in that players do not have
any incentive to deviate, and is thus self-enforcing. The character of the equilibria
that arise when entanglement is present seem to bear resemblance to the concept in
classical games of a correlated equilibrium[30]. A correlated equilibrium in classical
games is achieved when mixed strategies are employed and there is communication
between the players in the form of advice or a contract. If players receive some piece
of advice, or react in a predetermined way to a random event, they can employ strate-
gies that are correlated with one another and realize self-enforcing equilibria that are
different from those in the mixed game without communication.

In contrast, our analysis includes only pure strategies and the role of the advice
is played by the initial entanglement. When the player’s qubits are entangled, the
outcomes of the measurement following their strategy choices will be correlated in a
specific way, determined by the type of entanglement. The entanglement is imposed
on the players by a referee, and once it is initially established, no communication
between the players is necessary, and in fact the players are physically prohibited
from breaking the contract. The correlation will also persist even if the players make
their strategy choices simultaneously and non-locally. In addition, the specific type of
non-classical correlation, enabled by entanglement, can be such that the players can
have correlated outputs that are not possible with classical probability distributions
in the absence of communication.
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However, as the amount of entanglement is changed, the effect that the imposed
correlation has on the structure of the NE can change dramatically. At zero entangle-
ment, the quantum formulation of the game strongly resembles the classical game,
with the players playing quantum strategies that closely resemble the classical strat-
egy choices (D,D). As the entanglement increases, the strategy choices of the NE do
not change, rather, they continue to play the same strategies as in the case with no en-
tanglement. Thus, the contract enforced by the initial entanglement does not induce
the players to play a strategy that is different than the one they would play if there
were no entanglement, rather it ensures that the outcome of their strategy choices
is correlated in a certain way. The conditions of the NE guarantee that the resulting
equilibrium is self-enforcing.

As the degree of entanglement, or amount of correlation, is increased, one might
expect that the effective contract is more strictly enforced or that the advice is more
closely followed, leading to a larger benefit for the players at equilibrium. This is true
for a while, but as in the two-player quantum PD game with symmetric payoffs, the
NEs are absent above a critical value of entanglement. This is similar to the phase-
transition like behavior that has been seen in some quantum games [27], and should
be investigated further. This also contrasts with an intuition of a classical game with
correlated equilibrium, where one might expect that the more strictly a contract is
enforced, the greater the benefit from that contract.

In the Bayesian game, we see evidence of a structure with a much richer and
sometimes surprising phase-transition like behavior that can occur both in the amount
of entanglement, as has been seen in the two-player games, but also in the amount
of incomplete information, i.e. p. If only looking at the classical Bayesian game, and
the two versions of the two-player game, one would not necessarily predict that there
is a region in the center with no NE, that new equilibria may appear (i.e. E4), or how
each of the NE will depend on the parameters p and γ without solving for the full
possibilities of the game. It is perhaps indicative of the structure of classical proba-
bility theory and quantum mechanical probability theory that the payoffs at the NE
vary linearly along p the classical probability and non-linearly (i.e. as trigonomet-
ric functions) along the quantum parameter γ , in which probabilities depend on the
square of the components of the player’s state (i.e. wave function).

The fact that the amount of entanglement can produce abrupt changes in the be-
havior of a quantum game underscores the importance of decoherence in a quantum
game application, as the purity of the initially entangled state could dramatically in-
fluence the outcomes and the stability of the game. The behavior of the game can also
abruptly changes as a function of the agents prior knowledge in a game, i.e. p. This
could certainly impact any algorithm taking place on a network, where knowledge of
the motivations and abilities of the other agents on the network is incomplete. The
structure as a result of the amount of entanglement is due to the constraints imposed
by the referee, while the structure in the priors is dependent on the beliefs of the play-
ers. Both are critical to the structure of the game, however, the referee can constrain
the possible equilibria that may be achieved by adjusting the amount of entanglement,
even if the player’s preferences, i.e. payoffs, and prior knowledge remain unchanged.

As stated earlier, each NE solution in the quantum game is an infinite class of
equilibria with a fixed phase relationship and equal payoffs. There remains an un-
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certainty in exactly which equal payoff NE, i.e. which phase, the players will end
up playing. This uncertainty can also arise in classical games. In several cases, there
are multiple NE that are different payoffs, and that differ by more than just a phase
relationship, such as in the DA’s brother game. The E4 equilibrium in the Bayesian
game is an example of a NE that does not exist in the two-player games, and can
occur simultaneously with other NE. When there are multiple NE, while playing a
game, it would be possible for the players to be stuck on a lower payoff NE, as a
local maximum in their payoff landscape, neither being willing to deviate.

It is interesting to note that in the two-player DA’s brother game, or with the
corresponding NE in the Bayesian games, the multiple NE that exist have strategy
choices which differ by more than a phase relationship and even correspond to differ-
ent classical strategy choices. At lower entanglement they have distinct payoffs, but
as the entanglement approaches maximal, the payoff converges to the same value.
This could complicate the NE when the two players cannot agree on which of the
equivalent payoff NE to play.

8 Conclusions and Future Work

We have classified the solutions to a quantum Bayesian game based on the prisoner’s
dilemma where there are multiple Nash equilibria. The phase structure of the game
in entanglement and probability space is non-trivial. The payoffs at these Nash equi-
libria are dependent on the entanglement parameter and the probability to play with
either player, and we have also identified some regions with the absence of Nash
equilibria. We solved for the phase relationships between the sets of strategy choices
within each class of Nash equilibria. We have seen evidence of a phase-transition like
behavior of the quantum Bayesian game varying both with the amount of entangle-
ment and the degree of incomplete information.

The relationship of the equilibrium solutions produced in the quantum game with
entanglement to the correlated equilibrium in classical games should be explored fur-
ther. The role of entanglement is often interpreted as a type of communication or
contract, yet the correlations induced by entanglement persist even when commu-
nication is not allowed. Entanglement is one of the more powerful and interesting
properties of quantum mechanics and a referee may be able to expoit the effective
non-local contract it forms in applications on a quantum network.

The phase-like behavior of the quantum games should be investigated further to
determine the nature of the phase transitions that occur. The player’s beliefs, or their
priors, can result in entirely different equilibria forming and the role of entanglement
as a contract could potentially be elucidated by better understanding how the amount
and type of entanglement, and the player’s prior beliefs can lead to phase transition-
like structures in the Nash equilibria of a game.
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