Skip to main content
Log in

Protecting single-photon entanglement with practical entanglement source

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  5. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  8. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 042305 (2005)

    Article  ADS  Google Scholar 

  9. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  10. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238 (2014)

    Article  ADS  Google Scholar 

  12. Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Preparation of multipartite entangled states used for quantum information networks. Sci. China Phys. Mech. Astron. 57, 1210 (2014)

    Article  ADS  Google Scholar 

  13. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57, 1696 (2014)

    Article  ADS  Google Scholar 

  14. Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141 (2015)

    Article  Google Scholar 

  15. Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, C.: Multiuser-to-multiuser entanglement distribution based on 1550nm polarization-entangled photons. Sci. Bull. 60, 1128 (2015)

    Article  Google Scholar 

  16. Lee, H.W., Kim, J.: Quantum teleportation and Bells inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2001)

    Article  ADS  Google Scholar 

  17. van Enk, S.J.: Single-particle entanglement. Phys. Rev. A 72, 064306 (2005)

    Article  ADS  Google Scholar 

  18. Hessmo, B., Usachev, P., Heydari, H., Björk, G.: Experimental demonstration of single photon nonlocality. Phys. Rev. Lett. 92, 180401 (2004)

    Article  ADS  Google Scholar 

  19. Monteiro, F., Caprara Vivoli, V., Guerreiro, T., Martin, A., Bancal, J.D., Zbinden, H., Thew, R.T., Sangouard, N.: Revealing genuine optical-path entanglement. Phys. Rev. Lett. 114, 170504 (2015)

    Article  ADS  Google Scholar 

  20. Guerreiro, T., Monteiro, F., Martin, A., et al.: Demonstration of Einstein–Podolsky–Rosen steering using single-photon path entanglement and displacement-based detection. Phys. Rev. Lett. 117, 070404 (2016)

    Article  ADS  Google Scholar 

  21. Ho, M., Morin, O., Bancal, J.D., Gisin, N., Sangouard, N., Laurat, J.: Witnessing single-photon entanglement with local homodyne measurements: analytical bounds and robustness to losses. New J. Phys. 16, 130305 (2014)

    Google Scholar 

  22. Duan, L.M., Lukin, M.D., Cirac, J.T., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001)

    Article  ADS  Google Scholar 

  23. Simon, C., de Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  24. Sangouard, N., Simon, C., Zhao, B., Chen, Y.A., de Riedmatten, H., Pan, J.W., Gisin, N.: Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77, 062301 (2008)

    Article  ADS  Google Scholar 

  25. Pan, J.W., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nat. Lond. 410, 1067 (2001)

    Article  ADS  Google Scholar 

  26. Sheng, Y.B., Zhou, L., Long, G.L.: Hybrid entanglement purification for quantum repeaters. Phys. Rev. A 88, 022302 (2013)

    Article  ADS  Google Scholar 

  27. Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)

    Article  ADS  Google Scholar 

  28. Ren, B.C., Du, F.F., Deng, F.G.: Two-step hyperentanglement purification with the quantum-state-joining method. Phys. Rev. A 90, 052309 (2014)

    Article  ADS  Google Scholar 

  29. Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)

    Article  Google Scholar 

  30. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  31. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  32. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  33. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  34. Liang, B.B., Hu, S., Cui, W.X., An, C.S., Xing, Y., Hu, J.S., Sun, G.Q., Jiang, X.X., Wang, H.F.: Scheme for realizing the entanglement concentration of unknown partially entangled three-photon W states assisted by quantum dot-microcavity coupled system. Laser Phys. Lett. 11, 115202 (2014)

    Article  ADS  Google Scholar 

  35. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  36. Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China Phys. Mech. Astron. 58, 040303 (2015)

    Google Scholar 

  37. Sheng, Y.B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Li, X.H., Ghose, S.: Hyperentanglement concentration for time-bin and polarization hyperentangled photons. Phys. Rev. A 91, 062302 (2015)

    Article  ADS  Google Scholar 

  39. Li, X.H., Ghose, S.: Hyperconcentration for multipartite entanglement via linear optics. Laser Phys. Lett. 11, 125201 (2014)

    Article  ADS  Google Scholar 

  40. Wang, C., Cao, C., He, L.Y., Zhang, C.L.: Hybrid entanglement concentration using quantum dot and microcavity coupled system. Quantum Inf. Process. 13, 1025 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Cao, C., Ding, H., Li, Y., Wang, T.J., Mi, S.C., Zhang, R., Wang, C.: Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quantum Inf. Process. 14, 1265 (2015)

    Article  ADS  MATH  Google Scholar 

  42. Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quant. Inf. Process. 12, 2087 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf. Process. 13, 1967 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077 (2015)

    Article  ADS  MATH  Google Scholar 

  46. Qu, C.C., Zhou, L., Sheng, Y.B.: Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state. Quantum Inf. Process. 14, 4131 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China Phys. Mech. Astron. 58, 060301 (2015)

    Article  Google Scholar 

  48. Pan, J., Zhou, L., Gu, S.P., Wang, X.F., Sheng, Y.B.: Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity. Quantum Inf. Process. 15, 1669 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Banerjee, A., Shukla, C., Pathak, A.: Maximal entanglement concentration for a set of (n+1)-qubit states. Quantum Inf. Process. 14, 4523 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quantum Inf. Process. 14, 1305 (2015)

    Article  ADS  MATH  Google Scholar 

  51. Sangouard, N., Simon, C., Coudreau, T., Gisin, N.: Purification of single-photon entanglement with linear optics. Phys. Rev. A 78, 050301 (2008)

    Article  ADS  Google Scholar 

  52. Salart, D., Landry, O., Sangouard, N., Gisin, N., Herrmann, H., Sanguinetti, B., Simon, C., Sohler, W., Thew, R.T., Thomas, A., Zbinden, H.: Purification of single-photon entanglement. Phys. Rev. Lett. 104, 180504 (2010)

    Article  ADS  Google Scholar 

  53. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inf. Comput. 10, 272 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Zhou, L., Sheng, Y.B.: Efficient single-photon entanglement concentration for quantum communications. Opt. Commun. 313, 217 (2014)

    Article  ADS  Google Scholar 

  55. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71 (2013)

    Article  ADS  Google Scholar 

  56. Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems. In: lvovsky A. (ed.) Proceedings of the 9th International Conference on Quantum Commmunication Measuremeny and Computing, (AIP, 2009), pp. 155–160

  57. Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)

    Article  ADS  Google Scholar 

  58. Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photonics 4, 316 (2010)

    Article  Google Scholar 

  59. Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23 (2012)

    Article  Google Scholar 

  60. Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304(R) (2011)

    Article  ADS  Google Scholar 

  61. Pitkanen, D., Ma, X., Wickert, R., van Loock, P., Lütkenhaus, N.: Efficient heralding of photonic qubits with application to device-inpendent quantum key distribution. Phys. Rev. A 84, 022325 (2011)

    Article  ADS  Google Scholar 

  62. Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)

    Article  ADS  Google Scholar 

  63. Bruno, N., Pini, V., Martin, A., Verma, V.B., Nam, S.W., Mirin, R., Lita, A., Marsili, F., Krozh, B., Bussières, F., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.: Heralded amplification of photonic qubits. Opt. Express 24, 125 (2016)

    Article  ADS  Google Scholar 

  64. Meyer-Scott, E., Bula, M., Bartkiewicz, K., Černoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based liner-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013)

    Article  ADS  Google Scholar 

  65. Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Linear-optical qubit amplification with spontaneous parametric down-conversion source. Laser Phys. 26, 015204 (2016)

    Article  ADS  Google Scholar 

  66. Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplification. Phys. Rev. A 86, 034302 (2012)

    Article  ADS  Google Scholar 

  67. Zhou, L., Sheng, Y.B.: Distilling single-photon entanglement from photon loss and decoherence. J. Opt. Soc. Am. B 30, 2737 (2013)

    Article  ADS  Google Scholar 

  68. Sheng, Y.B., Ou-Yang, Y., Zhou, L., Wang, L.: Protecting single-photon multi-mode W state from photon loss. Quantum Inf. Process. 13, 1595 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    Article  ADS  Google Scholar 

  70. Wang, T.J., Wang, C.: High-efficient entanglement distillation from photon loss and decoherence. Opt. Express 23, 31550 (2015)

    Article  ADS  Google Scholar 

  71. Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Protecting single-photon entanglement with imperfect single-photon source. Quantum Inf. Process. 14, 635 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Feng, Z.F., Ou-Yang, Y., Zhou, L., Sheng, Y.B.: Distillation of arbitrary single-photon entanglement assisted with polarized Bell states. Quantum Inf. Process. 14, 3693 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)

    Article  ADS  Google Scholar 

  74. Yang, S., Zou, X.B., Guo, G.C., Ruan, N.J., Lin, X.L., Wu, Z.Q.: Long baseline weak-thermal-light interferometry with noiseless linear amplification. J. Opt. Soc. Am. B 32, 1031 (2015)

    Article  ADS  Google Scholar 

  75. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  76. White, A.G., James, D.F.V., Eberhard, P.H., Kwiat, P.G.: Nonmaximally entangled states: production, characterization, and utilization. Phys. Rev. A 83, 03103 (2000)

    Google Scholar 

  77. Mic̆cuda, M., Straka, I., Miková, M., Cerf, N.J., Fiurášek, J., Jez̆ek, M.: Noisless loss suppression in quantum optical communication. Phys. Rev. Lett. 109, 180503 (2012)

    Article  ADS  Google Scholar 

  78. Halenkovǎ, E., C̆ernoch, A., Lemr, K., Soubusta, J., Drusová, S.: Experimental implementation of the multifunctional compact two-photon state analyzer. Appl. Opt. 51, 474 (2012)

    Article  ADS  Google Scholar 

  79. Wang, X.L., Chen, L.K., Li, W., Huang, H.L., et al.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016)

    Article  ADS  Google Scholar 

  80. Zhang, C., Huang, Y.F., Wang, Z., Liu, B.H., Li, C.F., Guo, G.C.: Experimental Greenberger–Horne–Zeilinger-Type six-photon quantum nonlocality. Phys. Rev. Lett. 115, 260402 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11474168 and 61401222, the Natural Science Foundation of Jiangsu province under Grant No. BK20151502, the Qing Lan Project in Jiangsu Province, the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology under Grant No. NYKL201509 (Nanjing University of Posts and Telecommunications), the open research fund of National Mobile Communications Research Laboratory under Grant No. 2016D01 (Southeast University), the open research fund of The State Key Laboratory of Integrated Services Networks under Grant No. ISN17-04 (Xidian University) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Ou-Yang, Y., Wang, L. et al. Protecting single-photon entanglement with practical entanglement source. Quantum Inf Process 16, 151 (2017). https://doi.org/10.1007/s11128-017-1601-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1601-3

Keywords

Navigation