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Abstract:  Based on mixedness definition as       ( 2), we obtain a new variance-based 

uncertainty equality along with an inequality for Hermitian operators of a single-qubit 

system. The obtained uncertainty equality can be used as a measure of the system 

mixedness. A qubit system with feedback control is also exploited to demonstrate the 

new uncertainty. 
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I. Introduction 

Uncertainty relation lies at the heart of quantum mechanics, providing one of the most 

fundamental departures from classical concepts [1-15]. Any pair of incompatible observables 

admits a certain form of uncertainty relationship, and this constraint sets the ultimate bound on the 

measurement precision achievable for these quantities. As originally formulated by Heisenberg, 

the conventional variance-based uncertainty relation not only possesses a clear physical 

conception, but also has a variety of applications in quantum information science such as 

entanglement detection [5, 16, 17], quantum spin squeezing [18-21], and even quantum metrology 

[22-24]. Among them Robertson uncertainty relation (RUR) is the most famous one [2]: 

(∆𝐴)2(∆𝐵)2  ≥  |
1

2i
〈,𝐴, 𝐵-〉|

2
,                       (1) 

where the standard deviation ∆O and expectation value 〈O〉 are taken over the state ρ with 

O ∈ *A, B+. A strengthened form of RUR is due to Schrodinger [3，25-27], who derived the 

following Schrödinger uncertainty relation (SUR):  

(∆𝐴)2(∆𝐵)2  ≥  |
1

2i
〈,𝐴, 𝐵-〉|

2
+ |

1

2
〈{𝐴̌, 𝐵̌}〉|

2
,                    (2) 

where 𝐼 denotes the identical operator and 𝑂̌  𝑂  〈𝑂〉𝐼. Uncertainty inequalities similar to Eq. 
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(1) and Eq. (2) are often referred to as Heisenberg-type and Schrödinger-type uncertainty relation, 

respectively. There are also many different ways to quantify the measurement uncertainty, such as 

Entropic uncertainty relation (EUR) [8-14] and Heisenberg’s Noise-disturbance uncertainty 

[28-31]. The initial version of EUR is given by Kraus [4]: 

𝐻(𝐴) + 𝐻(𝐵) ≥ log2
1

𝑐
  ,                         (3) 

where 𝐻(𝐴) is the Shannon entropy of the probability distribution of the outcome when 𝐴 is 

measured, and likewise for 𝐻(𝐵). log2( c⁄ ) quantifies the complementarity of 𝐴 and 𝐵 , 

where 𝑐  max𝑎,𝑏|⟨𝛹𝑎|𝛷𝑏⟩|
2  with |𝛹𝑎⟩  and |𝛷𝑏⟩  being the eigenvectors 𝐴  and 𝐵 . A 

modification of the entropic uncertainty relation occurs in the presence of quantum memory 

associated with quantum correlations [6]. The uncertainty relations for multi-observable have also 

been formulated besides two-observable uncertainty relations [27]. 

The outline of the paper is as follows. In Sec. II, we obtain a new variance-based uncertainty 

equality along with an inequality for Hermitian operators of a single-qubit system on the basis of 

SUR and RUR. The obtained uncertainty equality can be used as a measure of system mixedness 

which usually is expensive in terms of resources and measurements involved. In Sec. III, We show 

using the example of a qubit system with feedback that the tightness of the uncertainty inequality 

can be maintained at a high level even in an open system. Finally, Sec. IV is devoted to the 

discussion and conclusion. 

II. Deduction of the new variance-based uncertainty equality  

   The mixedness definition of the system, the construction of the new variance-based 

uncertainty equality, and the relevant discussion are presented in this section. 

Definition of Mixedness: A state   is a mixed one when 0 <   ( 2) <   and   ( 2)    for the 

pure one. Therefore, the value of   can be employed to quantify the system mixedness by 

denoting M      (ρ2).The convexity of mixedness is derived as (for more detail please see 

Appendix):  

 (𝑥𝜌𝐴:(1;𝑥)𝜌𝐵) ≥ 𝑥 (𝜌𝐴) + (  𝑥) (𝜌𝐵),                 (4) 

where  A  and  B  represent two arbitrary density matrices, 𝑥 𝐴 + (  𝑥) 𝐵  is the 

combination of them with  0 ≤ 𝑥 ≤   and  (𝜌)  stands for the mixedness of the state   

( ∈ * 𝐴,  𝐵, 𝑥 𝐴 + (  𝑥) 𝐵+).  
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Variance-based Uncertainty equality: Let 𝐴 and 𝐵 stand for two arbitrary Hermitian operators 

of the single-qubit system, then the uncertainty of the outcomes when they are measured admit the 

following equality: 

(∆𝐴)2(∆𝐵)2   |
1

2𝑖
〈,𝐴, 𝐵-〉|

2
+ |

1

2
〈*𝐴̌, 𝐵̌+〉|

2
+
1

8
 ,𝜉(𝐴, 𝐴)𝜉(𝐵, 𝐵)  𝜉(𝐴, 𝐵)2-,       (5) 

where ξ(𝑅, 𝑆)  2  (𝑅𝑆)    (𝑅)  (𝑆) with 𝑅, 𝑆 ∈ *𝐴, 𝐵+. 

Proof: In Bloch sphere representation, the density matrix of the single-qubit system can be 

expressed as [25]: 

  
1

2
(𝐼 + 𝑝𝑥𝜎𝑥 + 𝑝𝑦𝜎𝑦 + 𝑝𝑧𝜎𝑧),                      (6) 

where 𝐼 stands for the identity matrix, 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧  are standard Pauli matrices and 𝑝𝑥 , 𝑝𝑦  , 𝑝𝑧 

denote real parameters with 𝑝𝑥
2 + 𝑝𝑦

2 + 𝑝𝑧
2 ≤  . After simple calculation, the system 

mixedness is obtained as: 

  
1

2
(  𝑝𝑥

2   𝑝𝑦
2   𝑝𝑧

2).                       (7) 

It is well known that an two-dimension Hermitian operator can be written as a linear combination 

of {𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧, 𝐼}： 

𝐴  𝑎1𝜎𝑥 + 𝑎2𝜎𝑦 + 𝑎3𝜎𝑧 + 𝑎4𝐼.                         (8) 

𝐵  𝑏1𝜎𝑥 + 𝑏2𝜎𝑦 + 𝑏3𝜎𝑧 + 𝑏4𝐼.                         (9) 

where 𝑎𝑖 and 𝑏𝑖  are real parameters (𝑖   ,2,3,4). Based on the above, we have: 

(∆𝐴)2  (  𝑝𝑥
2)𝑎1

2 + (  𝑝𝑦
2)𝑎2

2 + (  𝑝𝑧
2)𝑎3

2  2,𝑝𝑦𝑝𝑧𝑎2𝑎3 + 𝑝𝑥𝑎1(𝑝𝑦𝑎2 + 𝑝𝑧𝑎3)-, 

                     (10) 

(∆𝐵)2  (  𝑝𝑥
2)𝑏1

2 + (  𝑝𝑦
2)𝑏2

2 + (  𝑝𝑧
2)𝑏3

2  2,𝑝𝑦𝑝𝑧𝑏2𝑏3 + 𝑝𝑥𝑏1(𝑝𝑦𝑏2 + 𝑝𝑧𝑏3)-,  

   (11) 

|
1

2i
〈,𝐴, 𝐵-〉|

2
 (𝑝𝑥(𝑎3𝑏2  𝑎2𝑏3) + 𝑝𝑦(𝑎1𝑏3  𝑎3𝑏1) + 𝑝𝑧(𝑎2𝑏1  𝑎1𝑏2))

2,      (12) 

|
1

2
〈*𝐴̌, 𝐵̌+〉|

2
 ((𝑝𝑥

2   )𝑎1 + 𝑝𝑥(𝑝𝑦𝑎2 + 𝑝𝑧𝑎3))𝑏1 + (𝑝𝑥𝑝𝑦𝑎1 + (𝑝𝑦
2   )𝑎2 + 𝑝𝑦𝑝𝑧𝑎3)𝑏2 +

(𝑝𝑥𝑝𝑧𝑎1 + 𝑝𝑦𝑝𝑧𝑎2 + (𝑝𝑧
2   )𝑎3)𝑏3,                               (13) 

  (𝐴2)  2𝑎1
2 + 2𝑎2

2 + 2𝑎3
2 + 2𝑎4

2 ,                   (14) 

  (𝐵2)  2𝑏1
2 + 2𝑏2

2 + 2𝑏3
2 + 2𝑏4

2
 ,                   (15) 

  (𝐴)  2𝑎4,   (𝐵)  2b4  ,                      (16) 

  (𝐴𝐵)  2𝑎1𝑏1 + 2𝑎2𝑏2 + 2𝑎3𝑏3 + 2𝑎4𝑏4 .                (17) 
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The uncertainty equality can be obtained by some simple substitution and then the proof is 

completed.  

It is notable that the contribution of the mixedness is mainly reflected in the remainder of the 

new equality and the uncertainty degenerates into SUR when the system mixedness reaches 

minimum value. In addition, the obtained uncertainty equality can be used as a measure of system 

mixedness which usually is expensive in terms of the resource and measurement involved. The 

expression of the mixedness can be obtained by a deformation of Eq. (5): 

  
8,(∆𝐴)2(∆𝐵)2; |

1

2i
〈,𝐴,𝐵-〉|

2
;|
1

2
〈*𝐴,𝐵+〉;〈𝐴〉〈𝐵〉|

2
-

𝜉(𝐴,𝐴)𝜉(𝐵,𝐵);𝜉(𝐴,𝐵)2
                      (18) 

According to Eq. (18), the system mixedness can be easily obtained by detecting the variance and 

expectation involved. Finally, a new Heisenberg-type uncertainty inequality is derived by using 

the non-negativity of |〈{Ǎ, B̌}〉|
2
, 

(∆𝐴)2(∆𝐵)2 ≥ |
1

2i
〈,𝐴, 𝐵-〉|

2
+
1

8
 ,𝜉(𝐴, 𝐴)𝜉(𝐵, 𝐵)  𝜉(𝐴, 𝐵)2-,           (19) 

The superiority of Eq. (19) will be demonstrated in section III. 

III. Qubit system with feedback as an illustration 

Qubit system, a most widely used physical platform in the quantum information processing, 

has played an irreplaceable role in theoretical analysis and experimental tests. It would be of great 

interest to investigate the performance of the new uncertainty relations and compare them with 

other forms in the context of qubit systems. Quantum feedback control [32], which manipulates 

the system based on the information acquired by the measurement of the controlled system, will 

be added into the qubit system to control the system evolution more effectively. As shown in Fig.1, 

the physical model of a single atom resonantly coupled to a cavity with feedback will be 

introduced.  

 

Fig. 1: Schematic view of the model, the feedback Hamiltonian is applied to the atoms according to the homodyne 

current  ( ) derived from detector  , The coupling strength between the atom and the cavity is g, the two levels of 

the qubit are |0⟩ and | ⟩, and the spontaneous decay of the atom is  . 
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An effective damping rate 𝒯  g2 κ⁄  can be acquired under the condition that the cavity decay κ 

is much larger than the other relevant frequencies of the system [33]. In the limit 𝒯 ≫  , the 

spontaneous emission of the atoms is neglected and the dynamical evolution of this system can be 

described by the Dick model [33-36]: 

𝑑𝜌

𝑑𝑡
  𝑖, Ω𝜎𝑥 ,  - + 𝐷(𝒯𝜎;)                         (20) 

where   is the density matrix of the qubit, Ω is the Rabi frequency,  Ω𝜎𝑥 represents the driving 

of the laser field, 𝜎;  |0⟩⟨ | is the lowering operators of the qubit and the super operator 

𝐷(𝒪)  𝒪 𝒪:  (𝒪:𝒪 +  𝒪:𝒪) 2⁄  represents the irreversible evolution induced by the 

interaction between the system and environment. In the following we will take 𝒯    to simplify 

the calculation. 

The effect of feedback on the system will then be taken into consideration. As shown in Fig. 

1, the output of the cavity is measured by a detector, and the signal 𝐼(𝑡) from the detector triggers 

a time-continuous feedback Hamiltonian. The master equation takes the form [35,36] 

𝑑𝜌

𝑑𝑡
  𝑖 0 Ω𝜎𝑥 +

1

2
(𝜎+𝐹 + 𝐹𝜎;),  1 + 𝐷(𝜎;  i𝐹)               (21) 

Under the condition (i) Ω  0, namely taking no laser driving into consideration; (ii) |φ(  0)⟩  

cos (α)|0⟩ + sin (α)| ⟩; (iii)F  λσx with λ ∈ ,0, -, the evolved density matrix of the qubit can be 

exactly solved: 

 ( )  (
 11(𝑡)  12(𝑡)
 12

∗(𝑡)    11(𝑡)
),                      (22) 

with the elements 

 11(𝑡)  
ⅇ−𝑡(1+2𝜆

2),1:2ⅇ𝑡+2𝑡𝜆
2
𝜆2;(1:2𝜆2)cos (2𝛼)-

2(1:2𝜆2)
,                    (23) 

 12(𝑡)  
ⅇ−𝑡 2⁄ (;𝑖:𝑖ⅇ−2𝑡𝜆

2
:𝜆)sin (2𝛼)

2𝜆
.                         (24) 

Since the uncertainty equality (5) is saturated for any single-qubit states, we focus on the 

performance and the superiority of the Heisenberg-type inequality (19). In Ref. [26] another 

uncertainty is derived: 

(∆𝐴)2 + (∆𝐵)2 ≥
1

2
,∆(𝐴 + 𝐵)-2                       (25) 

The comparison between Eq. (3), Eq. (19) and Eq. (25) will be presented in the following. It turns 

out to be a relatively reasonable way to compare different types of uncertainty relations through 

dividing both sides of the inequalities by their own lower bound. Therefore, the tightness of them 
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is defined as: 

Ti1  
(∆𝐴)2(∆𝐵)2

|
1

2i
〈,𝐴,𝐵-〉|

2
; 
1

8
𝑀,𝜉(𝐴,𝐴)𝜉(𝐵,𝐵);𝜉(𝐴,𝐵)2-

                     (26) 

Ti2  
𝐻(𝐴):𝐻(𝐵)

log2
1

𝑐

                             (27) 

Ti3  
(∆𝐴)2:(∆𝐵)2

1

2
,∆(𝐴:𝐵)-2

                            (28) 

The analytic expressions of  Ti1 ,  Ti2  and  Ti3  can be obtained under the condition 𝐴  𝜎𝑥 , 

𝐵  𝜎𝑧 and 𝜆   .  

Ti1   +
,;1:ⅇ3t:3cos(2α)-2sin (2α)2

8ⅇ7t;ⅇt(1;3cos(2α))2;2ⅇ4t(3 cos(2α);1);9ⅇ6tsin (2α)2
           (29) 

We will not give the expressions of Ti2 and Ti3 due to their complicated form. The evolutions 

of Ti1, Ti2 and Ti3 with respect to time and the initial state are shown in Fig.2: 

 

Fig. 2: the evolution of the tightness Ti𝑖 with ( , 𝑡), Ti1 in (a), Ti2 in (b) and Ti3 in (c), here we take 𝜆   . 

It can be seen from the Fig.2 that the new uncertainty is tighter than the other two forms. Choosing 

 |𝜑0⟩  (|0⟩ + | ⟩)/√2 as the initial state leads to the following expression: 

Ti1  
(1;ⅇ−𝑡)(1:2ⅇ𝑡+2𝑡𝜆

2
𝜆2)(2ⅇ𝑡+2𝑡𝜆

2
(1:𝜆2);1)

ⅇ𝑡+2𝑡𝜆
2
,2:ⅇ2𝑡𝜆

2(4𝜆2(ⅇ𝑡;1)(𝜆2:1);1)-;1
                   (29) 

The evolution of Ti1 with respect to ( , λ) is illustrated by Fig. 3  
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Fig. 3: the evolution of tightness Ti1 with (𝜆,  ) 

As shown in Fig.3, the tightness of the new Heisenberg-type inequality can be maintained at a 

high level with time evolution by adjusting the feedback control, even in an open system, which is 

a very useful and meaningful resource in quantum information processing.  

IV. Conclusions  

In conclusion, we construct and formulate a variance-based Schrodinger-type uncertain equality 

along with a Heisenberg-type uncertainty inequality, which hold for all pairs of incompatible 

observables of the single-qubit system. The obtained equality can be used as a measure of system 

mixedness. As an illustration, the qubit system with a feedback is investigated to demonstrate the 

superiority of the new uncertainty inequality. It is found out that the tightness of the new 

inequality can be maintained at a higher level with time evolution, even in open system. 
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Appendix  

With the inner product and the linearly independent basic vector of 𝑑 × 𝑑 dimension density 

matrix space being: 

〈 , 𝜎〉    ( :𝜎).                             (A1) 

{ ，Π1, Π2, …Π𝑑2;1},                           (A2) 

where 𝐼 stands for the identical matrix, and   (Πi)  0, the density matrixes and their 

combination in the Bloch representation can be written as 

 A  
1

𝑑
(𝐼 + ∑ 𝑝𝑖

𝐴𝑑2;1
𝑖<1 Π𝑖),                         (A3) 

 B  
1

𝑑
(𝐼 + ∑ 𝑝𝑖

𝐵𝑑2;1
𝑖<1 Π𝑖),                         (A4) 
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𝑥 𝐴 + (  𝑥) 𝐵  
1

𝑑
{𝐼 + ∑ [𝑥𝑝𝑖

𝐴 + (  𝑥)𝑝𝑖
𝐵]Π𝑖

𝑑2;1
𝑖<1 },           (A5) 

where0 ≤ 𝑥 ≤   and 0 ≤ ∑ 𝑝𝑖
 2𝑑2;1

𝑖<1 ≤   ( ∈ *A, B+). Based on the above, 

  ( 𝐴
2)    ( 𝐴

: 𝐴)  
 

𝑑2
.𝑑 + 𝑑∑ 𝑝

𝑖
𝐴2𝑑2  

𝑖  /,                   (A6) 

  ( 𝐵
2)    ( 𝐵

: 𝐵)  
 

𝑑2
.𝑑 + 𝑑∑ 𝑝

𝑖
𝐵2𝑑2  

𝑖  /,                   (A7) 

  (,𝑥 𝐴 + (  𝑥) 𝐵-
2)  

 

𝑑2
.𝑑 + 𝑑∑ [𝑥𝑝𝑖

𝐴 + (  𝑥)𝑝
𝑖
𝐵]
2𝑑2  

𝑖  /,          (A8) 

can be obtained, and then we have 

  (,𝑥 𝐴 + (  𝑥) 𝐵-
2) ≤ 𝑥  ( 𝐴

2) + (  𝑥)  ( 𝐵
2),            (A9) 

where the inequalities 𝑝𝑖
𝐴2 + 𝑝𝑖

𝐵2 ≥ 2𝑝𝑖
𝐴𝑝𝑖

𝐵  has been used. Thus, the convexity of system 

mixedness is derived as 

 (𝑥𝜌𝐴:(1;𝑥)𝜌𝐵) ≥ 𝑥 (𝜌𝐴) + (  𝑥) (𝜌𝐵),            (A10) 

                   

References: 

[1] Heisenberg, W.: Überden anschaulichen Inhalt der quantentheoretischen 

Kinematik und Mechanik.Z. Phys. 43, 172 (1927). 

[2] Robertson, H. P.:The uncertainty principle. Phys. Rev. 34, 163 (1929). 

[3] Schrodinger, E.: Sitzungsberichte der Preussischen Akademie der Wissenschaften. 

Physikalisch-mathematische Klasse 14, 296 (1930) 

[4] Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 

(1987). 

[5] Prevedel, R., Hamel, D. R., Colbeck, R., Fisher, K., Resch, K. J.: Experimental 

investigation of the uncertainty principle in the presence of quantum memory and its 

application to witnessing entanglement. Nat. Phys. 7, 757 (2011). 

[6] Berta, M., Christandl, M., Colbeck, R., Renes, J. M., Renner, R.: The uncertainty 

principle in the presence of quantum memory.Nat. Phys. 6, 659 (2010). 

[7] Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of 

quantum mechanics.Science 330, 1072 (2010);. 

[8] Li, C.F., Xu, J.S., Xu, X.Y., Li, K., and Guo, G.C.: Experimental investigation of the 

entanglement-assisted entropic uncertainty principle. Nat. Phys. 7, 752 (2011). 

[9] S. Wehner and A. Winter, Entropic uncertainty relations—A survey, New J. Phys. 12, 

025009 (2010). 

[10] Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 

106, 110506 (2011). 

http://journals.aps.org/pr/abstract/10.1103/PhysRev.34.163
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.35.3070
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fwww.nature.com%2Fnphys%2Fjournal%2Fv7%2Fn10%2Fabs%2Fnphys2048.html&hl=zh-CN&sa=T&ct=res&cd=0&ei=40n2V-6xFYXv2Aae9paQBg&scisig=AAGBfm27VMp6CtithIYs2iR91R6cxSs-8w&nossl=1&ws=1920x985
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fwww.nature.com%2Fnphys%2Fjournal%2Fv7%2Fn10%2Fabs%2Fnphys2048.html&hl=zh-CN&sa=T&ct=res&cd=0&ei=40n2V-6xFYXv2Aae9paQBg&scisig=AAGBfm27VMp6CtithIYs2iR91R6cxSs-8w&nossl=1&ws=1920x985
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fwww.nature.com%2Fnphys%2Fjournal%2Fv7%2Fn10%2Fabs%2Fnphys2048.html&hl=zh-CN&sa=T&ct=res&cd=0&ei=40n2V-6xFYXv2Aae9paQBg&scisig=AAGBfm27VMp6CtithIYs2iR91R6cxSs-8w&nossl=1&ws=1920x985
http://www.nature.com/nphys/journal/v6/n9/abs/nphys1734.html
http://www.nature.com/nphys/journal/v6/n9/abs/nphys1734.html
http://science.sciencemag.org/content/330/6007/1072.short
http://science.sciencemag.org/content/330/6007/1072.short
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fwww.nature.com%2Fnphys%2Fjournal%2Fv7%2Fn10%2Fabs%2Fnphys2047.html&hl=zh-CN&sa=T&ct=res&cd=0&ei=F072V_vLBIWnjAHR74T4Cg&scisig=AAGBfm30zztwG89hhUPM-tzzLh94C_Wzow&nossl=1&ws=1920x985
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fwww.nature.com%2Fnphys%2Fjournal%2Fv7%2Fn10%2Fabs%2Fnphys2047.html&hl=zh-CN&sa=T&ct=res&cd=0&ei=F072V_vLBIWnjAHR74T4Cg&scisig=AAGBfm30zztwG89hhUPM-tzzLh94C_Wzow&nossl=1&ws=1920x985
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.110506


9 
 

[11] Coles, P. J., Colbeck, R., Yu, L., Zwolak, M.: Uncertainty relations from simple 

entropic properties. Phys. Rev. Lett. 108, 210405 (2012). 

[12] Coles, P. J.: Collapse of the quantum correlation hierarchy links entropic uncertainty to 

entanglement creation. Phys. Rev. A 86, 062334 (2012). 

[13] Xu, Z. Y., Yang, W. L., Feng, M.: Quantum-memory-assisted entropic uncertainty 

relation under noise. Phys. Rev. A 86, 012113(2012). 

[14] Pramanik,T., Chowdhury, P., Majumdar, A. S.:Fine-grained lower limit of entropic 

uncertainty in the presence of quantum memory. Phys. Rev. Lett. 110, 020402 (2013). 

[15] Mal, S., Pramanik, T., Majumdar1, A. S.: Detecting mixedness of qutrit systems using 

the uncertainty relation. Phys. Rev. A 87, 012105 (2013). 

[16] Hofmann, H. F., Takeuchi, S.: Violation of local uncertainty relations as a signature of 

entanglement. Phys. Rev. A 68, 032103 (2003). 

[17] Guhne, O.: Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92, 

117903 (2004).  

[18] Walls, D. F., Zoller, P.: Reduced quantum fluctuations in resonance fluorescence. Phys. 

Rev. Lett. 47, 709 (1981). 

[19] Wineland, D. J., Bollinger, J. J., Itano, W. M., Moore, F. L., Heinzen, D. J.: Spin 

squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797 (1992). 

[20] Kitagawa, M., Ueda, M.: Squeezed spin states. Phys. Rev. A 47, 5138 (1993). 

[21] Ma, J., Wang, X. G., Sun, C. P., Nori, F.: Quantum spin squeezing. Phys. Rep. 509, 89 

(2011). 

[22] Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: Beating the 

standard quantum limit. Science 306,1330 (2004). 

[23] Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 

010401 (2006). 

[24] Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. 

Photonics 5, 222 (2011). 

[25] Yao, Y., Xiao, X., Wang, X. G., Sun, C. P.: Implications and applications of the 

variance-based uncertainty equalities. Phys. Rev. A 91, 062113 (2015). 

[26] Maccone, L., Pati, A. K.: Stronger uncertainty relations for all incompatible observables. 

Phys. Rev. Lett. 113, 260401 (2014) 

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.210405
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.210405
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.062334
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.062334
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.012113
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.86.012113
https://xueshu.glgoo.org/citations?user=xbx8qFAAAAAJ&hl=zh-CN&oi=sra
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fjournals.aps.org%2Fprl%2Fabstract%2F10.1103%2FPhysRevLett.110.020402&hl=zh-CN&sa=T&ct=res&cd=0&ei=6ah1WLvaHcK7jAHry6ToBA&scisig=AAGBfm3pK5FQvSBTzd_HdfchzEvqkODk3Q&nossl=1&ws=1440x805
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fjournals.aps.org%2Fprl%2Fabstract%2F10.1103%2FPhysRevLett.110.020402&hl=zh-CN&sa=T&ct=res&cd=0&ei=6ah1WLvaHcK7jAHry6ToBA&scisig=AAGBfm3pK5FQvSBTzd_HdfchzEvqkODk3Q&nossl=1&ws=1440x805


10 
 

[27] Chen, B., Fei, S. M.: Sum uncertainty relations for arbitrary N incompatible observables. 

Scientific Reports 5, 14238 (2015) 

[28] Ozawa, M.: Universally valid reformulation of the Heisenberg uncertainty principle on 

noise and disturbance in measurement. Phys. Rev. A 67, 042105 (2003). 

[29] Rozema, L. A., Darabi, A., Mahler, D.H., Hayat, A., Soudagar, Y., Steinberg, A.M.: 

Violation of Heisenberg’s Measurement-Disturbance Relationship by Weak 

Measurements. Phys. Rev. Lett. 109, 100404 (2012). 

[30] Erhart, J., Sponar, S., Sulyok,G., Badurek, G., Ozawa, M., Hasegawa,Y.:Experimental 

demonstration of a universally valid error–disturbance uncertainty relation in spin 

measurements. Nat. Phys. 8, 185 (2012). 

[31] Branciard, C.: Deriving tight error-trade-off relations for approximate joint 

measurements of incompatible quantum observables. Phys. Rev. A 89, 022124 (2014). 

[32] Wiseman, H. M., Milburn, G. J.: Quantum theory of optical feedback via homodyne 

detection. Phys. Rev. Lett. 70, 548 (1993). 

[33] Wang, J., Wiseman, H. M., Milburn, G. J.: Dynamical creation of entanglement by 

homodyne-mediated feedback. Phys. Rev. A 71, 042309 (2005). 

[34] Carvalho, A. R. R., Hope, J. J.: Stabilising entanglement by quantum jump-based 

feedback. Phys. Rev. A 76, 010301 (2007). 

[35] Li, J. G., Zou, J., Shao, B., Cai, J. F.: Steady atomic entanglement with different 

quantum feedbacks. Phys. Rev. A 77, 012339 (2008). 

[36] Carvalho, A. R. R., Reid, A. J. S., Hope, J. J.: Controlling entanglement by direct 

quantum feedback. Phys. Rev. A 78, 012334(2008). 

 

http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fjournals.aps.org%2Fprl%2Fabstract%2F10.1103%2FPhysRevLett.70.548&hl=zh-CN&sa=T&ct=res&cd=0&ei=gqkEWMTVOZWhjAHKr5f4CA&scisig=AAGBfm2xL3rBSA1b1vhH1-Yl2t7Uz0tLYw&nossl=1&ws=1920x985
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fjournals.aps.org%2Fprl%2Fabstract%2F10.1103%2FPhysRevLett.70.548&hl=zh-CN&sa=T&ct=res&cd=0&ei=gqkEWMTVOZWhjAHKr5f4CA&scisig=AAGBfm2xL3rBSA1b1vhH1-Yl2t7Uz0tLYw&nossl=1&ws=1920x985
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fjournals.aps.org%2Fpra%2Fabstract%2F10.1103%2FPhysRevA.71.042309&hl=zh-CN&sa=T&ct=res&cd=0&ei=srF1WOv2NcK7jAHry6ToBA&scisig=AAGBfm3o1ebiZBFclvyNJ0xIjHuy9tFrqQ&nossl=1&ws=1440x805
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fjournals.aps.org%2Fpra%2Fabstract%2F10.1103%2FPhysRevA.71.042309&hl=zh-CN&sa=T&ct=res&cd=0&ei=srF1WOv2NcK7jAHry6ToBA&scisig=AAGBfm3o1ebiZBFclvyNJ0xIjHuy9tFrqQ&nossl=1&ws=1440x805
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fjournals.aps.org%2Fpra%2Fabstract%2F10.1103%2FPhysRevA.77.012339&hl=zh-CN&sa=T&ct=res&cd=0&ei=47J1WMGJOIK3jAHjxJyABg&scisig=AAGBfm2FJzLIMJQFeUPj551-nQpfAIrKUQ&nossl=1&ws=1440x805
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fjournals.aps.org%2Fpra%2Fabstract%2F10.1103%2FPhysRevA.77.012339&hl=zh-CN&sa=T&ct=res&cd=0&ei=47J1WMGJOIK3jAHjxJyABg&scisig=AAGBfm2FJzLIMJQFeUPj551-nQpfAIrKUQ&nossl=1&ws=1440x805
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fjournals.aps.org%2Fpra%2Fabstract%2F10.1103%2FPhysRevA.78.012334&hl=zh-CN&sa=T&ct=res&cd=0&ei=bbN1WLK8EYufjAHc4L2ADA&scisig=AAGBfm0WiE9_6aIgHxOjYKs2NPqjYjnk2g&nossl=1&ws=1440x805
http://xueshu.glgoo.org/scholar_url?url=http%3A%2F%2Fjournals.aps.org%2Fpra%2Fabstract%2F10.1103%2FPhysRevA.78.012334&hl=zh-CN&sa=T&ct=res&cd=0&ei=bbN1WLK8EYufjAHc4L2ADA&scisig=AAGBfm0WiE9_6aIgHxOjYKs2NPqjYjnk2g&nossl=1&ws=1440x805

