Skip to main content
Log in

Performance analysis of quantum Diesel heat engines with a two-level atom as working substance

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A quantum Diesel cycle, which consists of one quantum isobaric process, one quantum isochoric process and two quantum adiabatic processes, is established with a two-level atom as working substance. The parameter R in this model is defined as the ratio of the time in quantum isochoric process to the timescale for the potential width movement. The positive work condition, power output and efficiency are obtained, and the optimal performance is analyzed with different R. The effects of dissipation, the mixed state in the cycle and the results of other working substances are also discussed at the end of this analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Scovil, H.E.D., Schulz-DuBois, E.O.: Three-level masers as heat engines. Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  3. Geusic, J.E., Schulz-Du Bois, E.O., De Grasse, R.W., Scovil, H.E.D.: Three level spin refrigeration and maser action at 1500 mc/sec. J. Appl. Phys. 30, 1113 (1959)

    Article  ADS  Google Scholar 

  4. Sakurai, J.J.: Modern Quantum Mechanics Revised Edition. Addison-Wesley Publishing Company, Boston (1994)

    Google Scholar 

  5. Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Kieu, T.D.: The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. Kieu, H.T.: Quantum heat engines, the second law and Maxwells demon. Eur. Phys. J. D 39, 115 (2006)

    Article  ADS  Google Scholar 

  8. Quan, H.T.: Quantum thermodynamic cycles and quantum heat engines. II. Phys. Rev. E 79, 041129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Alicki, R.: Quantum thermodynamics. An example of two-level quantum machine. Open. Syst. Inf. Dyn. 21, 1440002 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, J., He, J., He, X.: Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity. Phys. Rev. E 84, 041127 (2011)

    Article  ADS  Google Scholar 

  11. Wang, J., He, J., He, X.: Quantum Otto engine of a two-level atom with single-mode fields. Phys. Rev. E 85, 041148 (2012)

    Article  ADS  Google Scholar 

  12. Thomas, G., Johal, R.S.: Friction due to inhomogeneous driving of coupled spins in a quantum heat engine. Eur. Phys. J. B 87, 166 (2014)

    Article  ADS  Google Scholar 

  13. Altintas, F., Hardal, A.Ü.C., Müstecapliog̃lu, Ö.E.: Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90, 032102 (2014)

    Article  ADS  Google Scholar 

  14. Henrich, M.J., Mahler, G., Michel, M.: Driven spin systems as quantum thermodynamic machines: fundamental limits. Phys. Rev. E 75, 051118 (2007)

    Article  ADS  Google Scholar 

  15. Zhang, T., Liu, W.T., Chen, P.X., Li, C.Z.: Four-level entangled quantum heat engines. Phys. Rev. A 75, 062102 (2007)

    Article  ADS  Google Scholar 

  16. Thomas, G., Johal, R.S.: Coupled quantum Otto cycle. Phys. Rev. E 83, 031135 (2011)

    Article  ADS  Google Scholar 

  17. Huang, X.L., Liu, Y., Wang, Z., Niu, X.Y.: Special coupled quantum Otto cycles. Eur. Phys. J. Plus 129, 4 (2014)

    Article  ADS  Google Scholar 

  18. Wang, J.H., Ye, Z.L., Lai, Y.M., Li, W.S., He, J.Z.: Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Phys. Rev. E 91, 062134 (2015)

    Article  ADS  Google Scholar 

  19. Abah, O., Robnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-Ion heat engine at maximum power. Phys. Rev. Lett. 109, 203006 (2012)

    Article  ADS  Google Scholar 

  20. Altintas, F., Hardal, A.Ü.C., Müstecapliog̃lu, Ö.E.: Rabi model as a quantum coherent heat engine: from quantum biology to superconducting circuits. Phys. Rev. A 91, 023816 (2015)

    Article  ADS  Google Scholar 

  21. Wang, H., Liu, S.Q., He, J.Z.: Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine. Phys. Rev. E 79, 041113 (2009)

    Article  ADS  Google Scholar 

  22. Zagoskin, A.M., Savelev, S., Nori, F., Kusmartsev, F.V.: Squeezing as the source of inefficiency in the quantum Otto cycle. Phys. Rev. B 86, 014501 (2012)

    Article  ADS  Google Scholar 

  23. Ma, J., Wang, X., Sun, C.P., Nori, F.: Quantum spin squeezing. Phys. Rep. 509, 86 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lambert, N., Chen, Y.N., Cheng, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)

    Article  Google Scholar 

  25. Zagoskin, A.M., Il’ichev, E., McCutcheon, M.W., Young, J.F., Nori, F.: Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit. Phys. Rev. Lett. 101, 253602 (2008)

    Article  ADS  Google Scholar 

  26. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  27. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  28. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  29. Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

  30. Robnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  31. Manzano, G., Galve, F., Zambrini, R., Parrondo, J.M.R.: Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 052120 (2016)

    Article  ADS  Google Scholar 

  32. Zhang, X.Y., Huang, X.L., Yi, X.X.: Quantum Otto heat engine with a non-Markovian reservoir. J. Phys. A 47, 455002 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Huang, X.L., Wang, L.C., Yi, X.X.: Quantum Brayton cycle with coupled systems as working substance. Phys. Rev. E 87, 012144 (2013)

    Article  ADS  Google Scholar 

  34. Maruyama, K., Nori, F., Vedral, V.: The physics of Maxwell’s demon and information. Rev. Mod. Phys. 81, 1 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Quan, H.T., Wang, Y.D., Liu, Y.X., Sun, C.P., Nori, F.: Maxwell’s demon assisted thermodynamic cycle in superconducting quantum circuits. Phys. Rev. Lett. 97, 180402 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Grajcar, M., Ashhab, S., Johansson, J.R., Nori, F.: Lower limit on the achievable temperature in resonator-based sideband cooling. Phys. Rev. B 78, 035406 (2008)

    Article  ADS  Google Scholar 

  37. Levy, A., Alicki, R., Kosloff, R.: Quantum refrigerators and the third law of thermodynamics. Phys. Rev. E 85, 061126 (2012)

    Article  ADS  Google Scholar 

  38. Sørdal, V.B., Bergli, J., Galperin, Y.M.: Cooling by heating: restoration of the third law of thermodynamics. Phys. Rev. E 93, 032102 (2016)

    Article  ADS  Google Scholar 

  39. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  40. Esposito, M., Kawai, R., Lindenberg, K.: Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 105, 150603 (2010)

    Article  ADS  Google Scholar 

  41. de Tomás, C., Hernández, A.C., Roco, J.M.M.: Optimal low symmetric dissipation Carnot engines and refrigerators. Phys. Rev. E 85, 010104 (2012)

    Article  Google Scholar 

  42. Guo, J., Wang, J., Wang, Y., Chen, J.: Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output. Phys. Rev. E 87, 012133 (2013)

    Article  ADS  Google Scholar 

  43. Muñoz, E., Peña, F.J.: Quantum heat engine in the relativistic limit: the case of a Dirac particle. Phys. Rev. E 86, 061108 (2012)

    Article  ADS  Google Scholar 

  44. Wang, J.H., He, J.Z.: Phase transitions for an ideal Bose condensate trapped in a quartic potential. Eur. Phys. J. D 64, 73 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSF of China under Grant Nos. 61475033, 11605024 and 11105064 and the Foundation of Department of Education of Liaoning Province (L201683664).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X.L., Shang, Y.F., Guo, D.Y. et al. Performance analysis of quantum Diesel heat engines with a two-level atom as working substance. Quantum Inf Process 16, 174 (2017). https://doi.org/10.1007/s11128-017-1624-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1624-9

Keywords

Navigation