Skip to main content
Log in

A new method for quantifying entanglement of multipartite entangled states

Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a new way for quantifying entanglement of multipartite entangled states which have a symmetrical structure and can be expressed as valence-bond-solid states. We put forward a new concept ‘unit.’ The entangled state can be decomposed into a series of units or be reconstructed by multiplying the units successively, which simplifies the analyses of multipartite entanglement greatly. We compute and add up the generalized concurrence of each unit to quantify the entanglement of the whole state. We verify that the new method coincides with concurrence for two-partite pure states. We prove that the new method is a good entanglement measure obeying the three necessary conditions for all good entanglement quantification methods. Based on the method, we compute the entanglement of multipartite GHZ, cluster and AKLT states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. 31(4), 555–563 (1935)

    Article  MATH  Google Scholar 

  2. Genovese, M.: Research on hidden variable theories: a review of recent progresses. Phys. Rep. 413(6), 319–396 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86(2), 419–478 (2014)

    Article  ADS  Google Scholar 

  4. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1965)

    Google Scholar 

  5. Hensen, B., Bernien, H., Drau, A.E., Reiserer, A., Kalb, N., Blok, M.S., et al.: Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575), 682–6 (2015)

    Article  ADS  Google Scholar 

  6. Shalm, L.K., Meyerscott, E., Christensen, B.G., Bierhorst, P., Wayne, M.A., Stevens, M.J., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)

    Article  ADS  Google Scholar 

  7. Giustina, M., Versteegh, M.A., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., et al.: Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015)

    Article  ADS  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Physics 74(1), 145–195 (2001)

    Google Scholar 

  10. Acn, A., Cirac, J.I., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3(4), 256–259 (2006)

    Google Scholar 

  11. Bennett, C.H., Divincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80(2), 517–576 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996)

    Article  ADS  Google Scholar 

  15. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1997)

    Article  ADS  Google Scholar 

  16. Pan, F., Liu, D., Lu, G., Draayer, J.P.: Simple entanglement measure for multipartite pure states. Int. J. Theor. Phys. 43(5), 1241–1247 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. yczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 60(2), 883–892 (1998)

    Article  MathSciNet  Google Scholar 

  18. Barnum, H., Linden, N.: Monotones and invariants for multi-particle quantum states. J. Phys. A Gen. Phys. 34(35), 6787–6805 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74(1), 197–234 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Eisert, J., Briegel, H.J.: Schmidt measure as a tool for quantifying multiparticle entanglement. Phys. Rev. A 64(2), 17–18 (2001)

    Article  Google Scholar 

  21. Huang, Y., Qiu, D.: Concurrence vectors of multipartite states based on coefficient matrices. Quantum Inf. Process. 11(1), 235–254 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–91 (2001)

    Article  ADS  Google Scholar 

  23. Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98(19), 190504–190504 (2007)

    Article  ADS  Google Scholar 

  24. Verstraete, F., Martn-Delgado, M.A., Cirac, J.I.: Diverging entanglement length in gapped quantum spin systems. Phys. Rev. Lett. 92(8), 087201 (2004)

    Article  ADS  Google Scholar 

  25. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78(12), 2275–2279 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Affleck, I., Kennedy, T., Lieb, E.H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys. 115(3), 477–528 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  27. Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J Opt. B Quantum Semiclass. Opt. 3(4), 223–227(5) (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Shandong Province (Nos. ZR2014AQ026, ZR2014AM023) and the National Science Foundation of China (Grant Nos. 61575180, 11475160, 61640009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jian Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, PY., Li, WD., Ma, XP. et al. A new method for quantifying entanglement of multipartite entangled states. Quantum Inf Process 16, 190 (2017). https://doi.org/10.1007/s11128-017-1632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1632-9

Keywords

Navigation