Skip to main content
Log in

Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantitative security of quantum-noise randomized cipher (QNRC) in optically amplified links is analyzed from the perspective of physical-layer advantage. Establishing the wire-tap channel models for both key and data, we derive the general expressions of secrecy capacities for the key against ciphertext-only attack and known-plaintext attack, and that for the data, which serve as the basic performance metrics. Further, the maximal achievable secrecy rate of the system is proposed, under which secrecy of both the key and data is guaranteed. Based on the same framework, the secrecy capacities of various cases can be assessed and compared. The results indicate perfect secrecy is potentially achievable for data transmission, and an elementary principle of setting proper number of photons and bases is given to ensure the maximal data secrecy capacity. But the key security is asymptotically perfect, which tends to be the main constraint of systemic maximal secrecy rate. Moreover, by adopting cascaded optical amplification, QNRC can realize long-haul transmission with secure rate up to Gb/s, which is orders of magnitude higher than the perfect secrecy rates of other encryption systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings on IEEE International Conference on Computers, Systems and Signal, Bangalore, India, pp. 175–179 (1984)

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301–1350 (2009)

    Article  ADS  Google Scholar 

  3. Patel, K., Dynes, J., Lucamarini, M., Choi, I., Sharpe, A., Yuan, Z.L., Penty, R., Shields, A.: Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks. Appl. Phys. Lett. 104(5), 051123 (2014)

    Article  ADS  Google Scholar 

  4. Barbosa, G., Corndorf, E., Kumar, P., Yuen, H.P.: Secure communication using mesoscopic coherent states. Phys. Rev. Lett. 90(22), 227901 (2003)

    Article  ADS  Google Scholar 

  5. Kanter, G.S., Reilly, D., Smith, N.: Practical physical-layer encryption: the marriage of optical noise with traditional cryptography. IEEE Commun. Mag. 47(11), 74–81 (2009)

    Article  Google Scholar 

  6. Nair, R., Yuen, H.P., Corndorf, E., Eguchi, T., Kumar, P.: Quantum-noise randomized ciphers. Phys. Rev. A 74(5), 052309 (2006)

    Article  ADS  Google Scholar 

  7. Liang, C., Kanter, G.S., Corndorf, E., Kumar, P.: Quantum noise protected data encryption in a WDM network. IEEE Photonics Technol. Lett. 17(7), 1573–1575 (2005)

    Article  ADS  Google Scholar 

  8. Yoshida, M., Hirooka, T., Kasai, K., Nakazawa, M.: Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km. Opt. Express 24(1), 652–661 (2016)

    Article  ADS  Google Scholar 

  9. Hirota, O.: Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol. Phys. Rev. A 76(3), 032307 (2007)

    Article  ADS  Google Scholar 

  10. Nair, R., Yuen, H.P.: Comment on: exposed-key weakness of \(\alpha \eta \). Phys. Lett. A 372(47), 7091–7096 (2008)

  11. Mihaljević, M.J.: Generic framework for the secure Yuen 2000 quantum-encryption protocol employing the wire-tap channel approach. Phys. Rev. A 75(5), 497–500 (2007)

    Google Scholar 

  12. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giles, C.R., Desurvire, E.: Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers. J. Lightwave Technol. 9(2), 147–154 (1991)

    Article  ADS  Google Scholar 

  14. Donnet, S., Thangaraj, A., Bloch, M., Cussey, J., Merolla, J.M., Larger, L.: Security of Y-00 under heterodyne measurement and fast correlation attack. Phys. Lett. A 356(6), 406–410 (2006)

    Article  ADS  MATH  Google Scholar 

  15. Jiao, H., Pu, T., Zheng, J., Xiang, P., Fang, T.: Physical-layer security analysis of quantum-noise randomized cipher based on the wire-tap channel model. Opt. Express 25(10), 10947–10960 (2017)

    Article  ADS  Google Scholar 

  16. Futami, F.: Experimental demonstrations of Y-00 cipher for high capacity and secure optical fiber communications. Quantum Inf. Process. 13(10), 2277–2291 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (Grant Nos. 61475193, 61504170, 61671306) and Natural Science Foundation of Jiangsu Province (BK20140069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilin Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, H., Pu, T., Xiang, P. et al. Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links. Quantum Inf Process 16, 189 (2017). https://doi.org/10.1007/s11128-017-1637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1637-4

Keywords

Navigation