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Abstract. An earlier work [18] proposes a method for solving the Lagrangian dual of a constrained

binary quadratic programming problem via quantum adiabatic evolution using an outer approxi-

mation method. This should be an efficient prescription for solving the Lagrangian dual problem in

the presence of an ideally noise-free quantum adiabatic system. However, current implementations

of quantum annealing systems demand methods that are efficient at handling possible sources of

noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for

the Lagrangian dual of a constrained binary polynomial programming problem. We then study the

quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS

problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty

coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer

and conclude that our approach helps this quantum processor to succeed more often in solving these

problems compared to the usual penalty-term approaches.

1. Introduction

Quantum annealing hardware has been employed to solve unconstrained binary quadratic pro-

gramming (UBQP) problems [16]. Motivated by real-world applications, several studies have fo-

cused on extending the capabilities of this hardware to solve more-general optimization problems

[17, 19, 21, 23]. In practice, formulations of real-world problems contain large lists of constraints,

and a technique used frequently in the quantum annealing literature is the penalizing of these

constraints in a single, unconstrained, objective function of several binary variables.

In the penalty methods, the penalty coefficients are assigned to be larger than a threshold, which

we will call the theoretical penalty bound. The theoretical penalty bounds are computed such that

the resulting unconstrained optimization problem is equivalent to the constrained formulation for

all instances of the problem. It is not generally trivial to find a tight theoretical penalty bound

for a given optimization problem. Moreover, a penalty bound that is sufficiently large for a given

instance of a problem is often much smaller than the theoretical penalty bound.

One may view quantum annealing as a physical implementation of a heuristic evolution. As such,

the appearance of terms that are different in orders of magnitude may create objective functions
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that are difficult for the quantum annealer to explore. The several sources of noise (elaborated

upon in Section 2.1) of quantum annealing hardware is an added reason of inconvenience of such

objective functions. Therefore, the theoretical penalty bounds are generally not suitable for the

application of quantum annealers. Finally, it is important to note that penalty methods cannot

efficiently handle inequality constraints.

In [18], Ronagh et al. explored application of outer approximation method for solving constrained

problems using quantum adiabatic computation. In the present paper, we explore an alternative

approach to solving a constrained binary polynomial programming (CBPP) problem stated formally

as

(CBPP)

max f(x),

s.t. gi(x) = 0 for i = 1, . . . ,m,

hj(x) ≤ 0 for j = 1, . . . , p,

x ∈ Bn,

where f , gi for i = 1, . . . ,m, and hj for j = 1, . . . , p are a finite number of polynomials on

Bn = {0, 1}n.

Note that, since for any three binary variables x, y, z ∈ B, the locus

(1) arg max 2z(x+ y)− 3z − xy

is identical to the vanishing locus of xy − z = 0 on B3, we may without loss of generality assume

that all CBPP problems have at least an equivalent representation

(CBQP)

max f(x),

s.t. gi(x) = 0 for i = 1, . . . ,m,

hj(x) ≤ 0 for j = 1, . . . , p,

x ∈ Bn,

where f , and all gi and hj are of degree at most two. Note that any quadratic function of the form

xtAx+ btx+ c on x ∈ Bn can be written as xt (A+ diag(b))x+ c by the fact that x2
i = xi, where

diag(b) is a diagonal matrix with entries of vector b on the diagonal.

A subclass of constrained binary quadratic programming (CBQP) problems is the quadratic stable

set (QSS) problem. Let G = (V,E) be a graph with vertex set V and edge set E. S ⊆ V is a stable

set of G if the subset of edges with both endpoints in S is empty. Let W define a matrix of weights

between each pair of vertices, and A stand for the adjacency matrix of graph G. The following is

a formal presentation of the QSS problem:

(QSS)

max xtWx,

s.t. xtAx = 0,

x ∈ Bn.

Unlike its well-known linear counterpart, that is, the stable set problem (also known as the maxi-

mum independent set problem), the QSS problem is more contemporary and has been addressed

to a lesser extent in the literature (see [6], [13], and references therein).
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In this paper, we present a method for solving the Lagrangian dual of a CBPP problem using

a subgradient descent approach and quantum annealing. Once applied to (QSS), this method

terminates in strong duality, hence solving (QSS) to optimality without the need for a branch-and-

bound scheme. In fact, the results presented in this paper apply to a more general form of the

QSS problem, in which A is not necessarily an adjacency matrix and entries of A can take any

non-negative values, that is, a problem similar to formulation (QSS) in which A ≥ 0. We refer to

this variant of the QSS problem as the generalized quadratic stable set (GQSS) problem.

The paper is organized as follows. In Section 2, we review the quantum adiabatic approach

to solving unconstrained binary quadratic programming (UBQP) problems, and the subgradient

descent method for solving the Lagrangian dual problem. In Sections 3, we focus on the QSS prob-

lem; we present the theoretical bounds on the penalty coefficients as well as the iterative methods

for solving the QSS problem via solving its Lagrangian dual. Our experiments are described and

numerical results are reported in Section 4. Finally, in Section 5, we state our concluding remarks.

2. Preliminaries

2.1. The quantum adiabatic approach to solving UBQP problems. We refer the reader to

[18] for a short introduction on quantum adiabatic computation. For a more extensive study, we

refer the reader to [4] and [5] for the proposal of a quantum adiabatic algorithm by Farhi et al.,

and to [20] for an exposition on its computational aspects.

These references suggest that practical quantum hardware can yield a significant quantum

speedup in certain optimization problems. In particular, quantum annealers manufactured by

D-Wave Systems Inc. solve a spin glass model problem where couplings connect pairs of quantum

bits [10]. These annealers solve Ising models:

(Ising) min
s∈{−1,1}n

∑
(i,j)∈E

Jijsisj +
∑
i∈V

hisi ,

where nonzero coefficients of the quadratic terms, that is, E, create a subgraph of a sparse graph

structure known as the Chimera graph [2].

Note that any UBQP problem of the form

(UBQP) min
x∈Bn

xtQx

can be represented as an equivalent Ising model by using the affine transformation of si = 2xi − 1.

Moreover, by using graph-minor embedding [3] and degree reduction techniques [9], one might

assume that these machines can solve any unconstrained binary polynomial programming problem.

(UBPP) max
x∈Bn

f(x) ,

where f(x) is any polynomial in real coefficients.

Our goal is to broaden the scope of application of quantum annealers by designing algorithms

for solving constrained binary programming problems that work in conjunction with such oracles.
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In [18], the authors proposed a method for solving CBQP problems using a branch-and-bound

framework in which the bounding strategy is to solve the Lagrangian dual of the primal problem by

successive application of quantum adiabatic evolution. The method described in [18] shows a fast

rate of convergence to solution of the dual problem in every node of the branch-and-bound tree and

provides a tight bound that drastically reduces the number of nodes traversed by the algorithm.

However, it is important to mention that quantum annealers are coupled to an environment, and

this significantly affects their performance.

Albash et al. propose a noise model for D-Wave devices [1]. This model includes the control

noise of the local field and couplings of the chip, as well as the effect of the cross-talk between qubits

that are not coupled. In [1], it is concluded that, despite the thermal excitations and small value

of the ratio of the single-qubit decoherence time to the annealing time, an open-system quantum-

dynamical description of the D-Wave device that starts from a quantized energy-level structure is

well justified. The design of benchmark instances that can detect quantum speedup or any quantum

advantage of a quantum annealer in comparison to state-of-the-art classical algorithms is studied

by Katzgraber et al. [11]. Zhu et al. [22] show that increasing the classical energy gap beyond the

intrinsic noise level of the machine can improve the success of the D-Wave Two quantum annealer,

at the cost of producing considerably easier benchmark instances. We refer the reader to [12] for

an explanation of the practicality of, and best practices in, using D-Wave devices.

2.2. The Lagrangian dual problem. The Lagrangian dual (LD) of (CBPP) is

(LD) min
λ∈Rm
µ∈Rp−

d(λ, µ),

where d(λ, µ) is evaluated via the Lagrangian relaxation

(Lλ,µ) d(λ, µ) = max
x∈Bn

L(x, λ, µ) = f(x) + λtg(x) + µth(x).

Here, g(x) = (g1(x), . . . , gm(x))t and h(x) = (h1(x), . . . , hp(x))t are the multivariable functions

g : Rn → Rm and h : Rn → Rp, respectively, with polynomial entries. The function d(λ, µ) is the

maximum of a finite set of linear functions of λ and µ and hence is convex and piecewise linear.

Lemma 1 (Weak Duality). The optimal value of (LD) is an upper bound for the optimal value of

(CBPP).

Proof. Straightforward calculations show that given any fixed choice of λ ∈ Rm and µ ∈ Rp−,

v := max
x∈Bn
{f(x) : g(x) = 0, h(x) ≤ 0}

≤ max
x∈Bn
{f(x) : λt.g(x) = 0, µt.h(x) ≥ 0}

≤ max
x∈Bn
{f(x) + λt.g(x) + µt.h(x)} .

�
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2.3. Subgradient method. Given any fixed tuple of Lagrange multipliers (λ, µ), the value of

d(λ, µ) is the solution to a UBPP problem. This is the key fact in the method explained here.

To solve (LD), an iterative approach may be employed. At the k-th iteration of the algorithm,

d(λ, µ) is evaluated using a quantum annealing process, and a primal solution x∗k is attained. Note

that d(λ, µ) is a convex function and the subgradient is a descent direction for L because of which

we can use a subgradient descent to the local (and hence global) minimum of L. The update rule

for the multipliers in the k-th iteration of the algorithm will follow [14]:

(2)
λk+1 = λk + sk

∇λL(x∗k)

‖∇λL(x∗k)‖

µk+1 = P−
(
µk + sk

∇µL(x∗k)

‖∇µL(x∗k)‖

)
,

where the projection P− keeps a p-dimensional vector µ in the negative orthant:

P−(µ) = (min(0, µ1), . . . ,min(0, µp)).

The algorithm is essentially [14, Procedure 3.1], where Step 1 is performed by quantum annealing.

Algorithm 1 Quantum Gradient Descent

initialize: Lagrange multipliers (λ0, µ0) and k = 0
until termination do

solve (Lλ,µ) using a quantum annealing device
find (λk+1, µk+1) using update rule (2)
k ← k + 1

sk in (2) is the step size, and the choice of step-size can greatly affect the performance of the above

algorithm.

3. The Quadratic Stable Set Problem

In this section, we investigate solving techniques for the generalized quadratic stable set problem

defined as

(GQSS)

max xtWx,

s.t. xtAx = 0,

x ∈ Bn,

where W ∈ Rn×n and A ≥ 0. Note that if we have several constraints of the form xtA(i)x = 0 for

i ∈ I in (GQSS), we can combine them into a single constraint xt
(∑

i∈I A
(i)
)
x = 0, hence reducing

it to the form mentioned above. Moreover, without loss of generality, we may assume that all of

the matrices in the quadratic terms in (GQSS) are symmetric, since xtQx = 1
2x

t
(
Q+Qt

)
x for

any Q ∈ Rn×n. Finally, notice that for any i, j where Aij 6= 0, we have xixj = 0; therefore, we may

pre-process (GQSS) such that W • A = 0 by setting Wij corresponding to nonzero Aij equal to

zero, where • denotes the Hadamard (or entry-wise) product. The discussion above is summarized

below in a list of assumptions on (GQSS).
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Assumptions on (GQSS):

(1) Problem (GQSS) has only a single constraint xtAx = 0, where A ≥ 0.

(2) Matrices A and W are symmetric.

(3) W •A = 0.

A common technique for solving (GQSS) is penalizing the constraint in the objective function

and solving the resulting unconstrained problem instead. It is easy to argue that for a sufficiently

large penalty coefficient, λ, the UBQP problem

(GQSSλ) L(λ) := max
x∈Bn

xtWx− λ(xtAx)

solves problem (GQSS). However, when aiming to use a quantum annealer to solve this problem,

it is important to choose the smallest possible λ to increase the chance of attaining the optimal

solution. The numerical experiment we present in the next section supports the idea that the

smallest value of λ for an arbitrary instance is generally much smaller than the theoretically derived

penalty bound. This suggests substituting the penalty methods by an iterative scheme such as the

subgradient method.

3.1. Penalty methods for GQSS problems. Let N (i) := {j 6= i : aij 6= 0} and W+ be the

matrix containing non-negative entries of W . Note that by Assumption 3, Wik = 0 (hence W+
ik = 0)

for all k ∈ N (i).

Proposition 1. Let λi =
W+
ii
2

+
∑
j 6∈N (i)6=iW

+
ij

minj:Aij 6=0 Aij
. For any λ > λ̃ := maxi λi, formulation (GQSSλ)

solves (GQSS).

Proof. Our proof is by contradiction. Suppose x∗ is the optimal solution of (GQSSλ), but it is

not feasible for (GQSS); thus, (x∗)tAx∗ 6= 0, meaning that ∃ p, q such that Apqx
∗
px
∗
q > 0, that is,

Apq 6= 0 and x∗p, x
∗
q = 1. We argue that by setting x∗p = 0, we can improve the objective value; hence

we reach the contradiction that x∗ was optimal for (GQSSλ). Let L(λ, x) := xtWx−λ
(
xtAx

)
, and

x̃∗ be the vector attained by setting x∗p = 0. It is easy to confirm that

L(λ, x̃∗) = L(λ, x∗) + 2
(
−Wpp

2 −
∑

j 6∈N (p)6=pWpjxj

)
+2λ

(
Apq +

∑
j∈N (p)6=q Apjxj

)
≥ L(λ, x∗) + 2

(
−W+

pp

2 −
∑

j 6∈N (p)6=pW
+
pjxj

)
+ 2λApq

≥ L(λ, x∗) + 2
(
−W+

pp

2 −
∑

j 6∈N (p)6=pW
+
pjxj

)
+ 2λ

(
minj:Aij 6=0Aij

)
> L(λ, x∗),

where the first inequality is satisfied by the fact that −Wij ≥ 0 for ij not appearing in W+ and

2λ
∑

j∈N (p) 6=q Apjxj ≥ 0, and the second inequality is a result of our choice of λ, that is,

2λ

(
min

j:Aij 6=0
Aij

)
> W+

pp + 2
∑

j 6∈N (p) 6=p

W+
pj .

�
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Remark. One may easily confirm that, in the absence of Assumption 3, λi in Proposition 1 can

be modified as

λi =

W+
ii

2 +
∑

j 6∈N (i) 6=iW
+
ij + maxj∈N (i)W

+
ij

minj:Aij 6=0Aij

so that the conclusion stays valid.

Remark. The bound derived in Proposition 1 is tight. Consider the following graph:

1

2

3 4

5

ω

ω

In the graph, solid and dotted lines stand for existing and non-existing edges, respectively; A ∈ Bn×n

is a binary matrix with entries 1 corresponding to existing edges, and 0 otherwise; and weights

matrix W is zero everywhere except for pairs {1, 2} and {3, 4}, on which the weight is ω. Note that

using Proposition 1, we have λ > ω; however, if λ ≤ ω, then x = (1, 1, 1, 1, 0) would be optimal for

(GQSSλ), whereas it is infeasible for (GQSS).

In the hope of decreasing the penalty coefficient and improving the chance of observing the

optimal solution, we use a separate λij for each nonzero entry of A, that is, solving

(GQSSΛ) L(Λ) := max
x∈Bn

xtWx− xt(Λ •A)x,

where Λ ∈ Rn×n, instead of (GQSSλ). We assume that Λ is symmetric, similar to A. The following

proposition, which is analogous to Proposition 1, shows how we can guarantee the solving of (GQSS)

via (GQSSΛ) by the proper choice of Λ.

Proposition 2. Let λi =
w+
ii
2 +

∑
j 6∈N (i)6=iw

+
ij , where N (i) is as defined before. Problem (GQSSΛ)

solves (GQSS) for matrix Λ = [λij ], where λij = λji >
max{λi,λj}

Aij
for those i and j where Aij 6= 0,

and λij = 0 otherwise.

The proof of the above proposition is very similar to the proof of Proposition 1, and is omitted

here to avoid repetition. Note that the largest entry of Λ is equal to λ̃ from Proposition 1.

Although the bounds of Propositions 1 and 2 are tight, when using the D-Wave 2X to solve

(GQSSλ) or (GQSSΛ), we observed that these bounds fail to achieve the solution in many of our
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test cases. In the section that follows, we see that the subgradient method for solving the Lagrangian

dual of (GQSS) can be viewed as a way of finding smaller penalty coefficients that are instance

dependent and improve the performance of the D-Wave 2X in solving (GQSS).

3.2. Iterative methods for the GQSS problem. Note that by A ≥ 0, we have xtAx ≥ 0 for

all x ∈ Bn. Therefore, we can substitute our equality constraint xtAx = 0 with an inequality

constraint as in the alternative formulation

(GQSS)

max xtWx ,

s.t. xtAx ≤ 0 ,

x ∈ Bn ,

with Lagrangian dual

(DGQSS) min
λ≥0

max
x∈Bn

xtWx− λ(xtAx) .

Proposition 3 (Strong duality). An optimal dual solution of (DGQSS ) corresponds to an optimal

primal solution of (GQSS).

Proof. In fact, a linear programming formulation of DGQSS is

(3)

min δ ,

s.t. δ ≥ xtWx− λ(xtAx) ∀x ∈ Bn ,
λ ≥ 0, δ ∈ R .

For every x ∈ Bn, every cut y = xtWx − λ(xtAx) has a non-positive slope. Since the constraint

xtAx ≤ 0 is feasible (for example, at x = 0), this dual problem is bounded and, at its optimal

solution, the mentioned constraint is turned on. This proves strong duality. �

Recall that the performance of Algorithm 1 depends heavily on the step-size schedule. In this

section, we look at a few iterative schemes to find a primal-dual solution (x∗, λ∗) that solves

(DGQSS ). Note that, since xtAx is always positive, the direction of the negative of the subgradient

vector is always in the positive direction of the λ-axis. Therefore, to solve (DGQSS ), we need only

an increasing sequence {λk}. The subgradient method then always terminates in strong duality

with a zero subgradient.

3.2.1. Newtonian method. This method is based on the update rule

(4) λk =
(xk−1)tWxk−1

(xk−1)tAxk−1
,

for all k ≥ 1 and starting from λ0 = 0.

Proposition 4. The sequence {λk} generated by Algorithm 2 is an increasing sequence.

Proof. Our proof is by induction. Note that xtWx = 0 for x = 0. Therefore, (x0)tWx0 ≥ 0; as a

result, λ1 ≥ 0 = λ0. By optimality of xk, we have

(xk)tWxk − λk(xk)tAxk ≥ (xk−1)tWxk−1 − λk(xk−1)tAxk−1 = 0;

8



Algorithm 2

initialize: k = 0, λ0 = 0, and x0 = arg maxx∈Bn x
tWx

while (xk)tAxk 6= 0 do
k = k + 1
find λk using update rule (4)
let xk := arg maxx∈Bn x

tWx− λk(xtAx)

therefore,
(xk)tWxk

(xk)tAxk
− λk = λk+1 − λk ≥ 0.

�

Notice that a feasible solution xf to (GQSS) provides a lower bound xtfWxf for the Lagrangian

dual of the problem. We can, therefore, modify the Newtonian method by replacing Equation (4)

with

(5) λk =
(xk−1)tWxk−1 − (xf )tWxf

(xk−1)tAxk−1
.

This suggests a modification of Algorithm 2, which we refer to as the modified Newtonian method.

At iteration k, after obtaining a solution corresponding to λk, xi’s are greedily set to zero until we

reach a feasible solution, and the best feasible solution attained thus far is updated accordingly.

The best feasible solution is then used in (5) for finding the next λ.

Results from the next section suggest that the Newtonian method is an improvement over the

theoretical bounds of Propositions 1 and 2. The method, however, occasionally takes large steps,

especially towards the end of the algorithm. To prevent this behaviour, for the remainder of this

section, we suggest incrementing λ with more-controlled step sizes.

3.2.2. Incremental method. In the incremental method, the updating rule for λ is

(6) λk+1 = λk + δs,

where δ ≤ 1 is a given constant. δ = 1 gives a fixed step-size update, and δ < 1 is a geometric

update in which the step size shrinks as the algorithm proceeds.

In utilizing a noisy quantum annealer, it is recommended to use the following termination crite-

rion: the number of feasible solutions we wish to collect before termination is given to the algorithm

(it is FeasCnt in Algorithm 3); after the termination, we pick the best observed feasible solution.

Note that the iterates in Algorithm 2 cannot proceed after a feasible solution is obtained, because

the denominator in (4) or (5) is zero. As a result, to employ this termination criterion for Algorithm

2, we need to update the iterates differently after reaching a feasible solution. One way to do this is

to switch to an incremental scheme after observing a feasible solution. However, as argued earlier

and supported by our experiments, the sequence of λ could get exceedingly large in Algorithm 2,

and incrementing them afterwards does not result in a significant advantage.
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Algorithm 3

given: FeasCnt , δ ≤ 1, λp, and sλ
initialize: λ0 = λp and cnt = 0
for k = 1, 2, . . . do

λk = λk−1 + sλ
sλ = δsλ
let xk := arg maxx∈Bn x

tWx− λk(xtAx)
if (xk)tAxk = 0

cnt = cnt +1
if cnt ≥ FeasCnt

terminate

The incremental method avoids the problem of taking long jumps, unlike the Newtonian method.

The shortcoming is that it is highly dependent on sλ and may take many iterations if λp and/or

sλ are too small. In what follows, we propose a hybrid technique that combines the advantages of

both the Newtonian and incremental methods.

3.2.3. Hybrid method. In the hybrid method, the step sizes are proportionate to the length of the

subgradients. Suppose that at iteration k we have λk and

(7) xk := arg max
x∈Bn

xtWx− λk
(
xtAx

)
.

Then,

(8) L(λ) ≥ (xk)tWxk − λ(xk)tAxk,

and the gradient of the right-hand side, δk = (xk)tAxk, is a subgradient for L. In our hybrid

scheme, we set

(9) λk+1 = λk + skλ, for skλ = α̃δk .

Similar to the incremental method, in the hybrid method we wish to collect a certain number

of feasible solutions before termination. Because δk vanishes when we see a feasible solution, we

switch to the incremental method with λp = λk and a given sλ after reaching the first feasible

solution. The complete algorithm is given below.

Algorithm 4

given: sλ and FeasCnt

initialize: k = 0, λ0 = 0, x0 = arg maxx∈Bn x
tWx, and α̃

while (xk)tAxk 6= 0 do
k ← k + 1
δk−1 = (xk−1)tAxk−1

λk = λk−1 + α̃δk−1

xk = arg maxx∈Bn x
tWx− λk(xtAx)

go to Algorithm 3 with λp := λk, sλ, δ = 1, and FeasCnt

10



4. Experimental results

In this section, we report our experimental results of solving (GQSS) using both the penalty

methods of Section 3.1 and the iterative methods of Section 3.2. The test instances of (GQSS) were

generated randomly, with matrices W taking integer entries between −5 and 5, and A generated

as sparse binary matrices with a sparsity of 0.4.

Let us first motivate our discussion by experimentally showing the inconvenience caused by large

penalty coefficients. The impact of λ on the chance of observing the optimal solution from the

quantum annealer is depicted in Figure 1 for two random instances. In the plots of Figure 1, the

range of λ, that is, from 0 to the theoretical bound for λ derived by Proposition 1, is divided into

100 steps, and the bound of Proposition 1 is depicted with a dashed line. For each value of λ for

which the quantum annealer succeeded in reaching the optimal solution, there is a ‘+’ mark showing

the number of times the optimal solution was observed among 1000 reads. Note that in both cases,

the values of λ for which the optimal solution is observed are smaller than the theoretical bound,

and, the smaller λ is, the higher is the chance of observing the optimal solution.

(a) (b)

Figure 1. Impact of λ on observing the optimal solution.

We generated 30 random test instances of the type described above. We ran two experiments on

them, one using the D-Wave 2X, with queries handled by D-Wave’s SAPI 2.2.1, and another using

single-flip simulated quantum annealing (SQA), based on the Trotterization of the path integral of

the quantum Hamiltonian of the Ising spin model with transverse field as discussed in [8, 15].

In the experiment of solving the test instances using the D-Wave 2X, the instances were embed-

ded on the Chimera graph of 1100 working qubits using the findEmbedding functionality of SAPI

2.2.1. Then, the sapiSolveIsing function was used with solutions post-processed in the optimization

mode. The ferromagnetic chain strengths were set to −1 after scaling the objective function such

that all coefficients were between −1 and 1. The chain strengths were iteratively incremented by

the geometric series with a ratio of 0.8. This iteration was terminated after sapiUnembedAnswer

collected 10% of a set number of numreads in discard mode.
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We have tested the theoretical bounds of Propositions 1 and 2, as well as the four iterative

schemes of Section 3.2—the Newtonian method, the modified Newtonian method, the incremental

method, and the hybrid method—on our randomly generated test cases. The Newtonian and

modified Newtonian methods were terminated as soon as the first feasible solution was obtained.

The incremental method was initialized with λ0 = 0, δ = 1, and sλ = 1 (i.e., we used fixed step-size

increments), and we collected five feasible solutions before termination (i.e., FeasCnt = 5). For the

hybrid method, we found α̃ such that λ1 coincides with λ1 from the Newtonian method, that is,

α̃δ0 =
(x0)tWx0

(x0)tAx0
,

which concludes

α̃(x0)tAx0 =
(x0)tWx0

(x0)tAx0
⇒ α̃ =

(x0)tWx0

((x0)tAx0)2 ,

where x0 = arg maxx∈Bn x
tWx. To avoid taking extremely small step sizes, we bounded our step-

size scheme by 0.05, so in our experiment we took α̃ = max
(

(x0)tWx0

((x0)tAx0)2
, 0.05

)
. Similar to the

incremental method, we collected five feasible points before termination, so FeasCnt = 5. In our

experiment, we set sλ = 0.5.

Table 1 summarizes the results of solving our test cases using the D-Wave 2X. In this table, n

is the dimension of the problem, and opt is the optimal objective value of the problem found using

Gurobi Optimizer 6.0.4 [7]. The results for theoretical bounds attained in Propositions 1 and 2 are

presented in columns prop1 and prop2, respectively. The columns new, m-new, incr, and hyb refer

to the Newtonian, modified Newtonian, incremental, and hybrid methods, respectively. For each

method, the best objective value obj and the corresponding Lagrangian multiplier λ are reported.

In prop2, λ refers to the range of the entries in the matrix of Lagrangian multipliers. For each

instance, an asterisk indicates whether the optimal solution was achieved. The column cnt in each

of the iterative methods, new, m-new, incr, and hyb, is the total number of reads over all iterations

of each method, obtained from the D-Wave 2X and reported in thousands. The number of reads

(again reported in thousands) for prop1 and prop2 were then selected to exceed the largest number

of reads performed by all of the iterative methods in favour of the penalty methods. It is worth

recalling that each iteration of any of our methods, including prop1 and prop2, may have several

calls to the D-Wave 2X while chain strengths increase until we collect at least 10% of a set number

of numreads in discard mode. Therefore, each iteration may have a different total numreads value,

because of which the columns cnt in prop1 and prop2 are not equal.

To dissociate the effect of embedding on our results, we also conducted an experiment with SQA

on our test cases; the results of this experiment are summarized in Table 2. In the SQA queries, the

inverse temperature β was set to 15. The number of Trotter slices was set to 15. The strength of

the transverse field was linearly scheduled to decrease from 3 to 0.1. Each read from SQA consisted

of 100 sweeps through the effective Hamiltonian in one dimension higher. In Table 2, cnt is the

total number of reads for a complete run of each method; the number of reads in each iteration of
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Table 1. Experimental results using the D-Wave 2X.

prop1 prop2 new m-new incr hyb
n opt λ obj cnt λ obj cnt λ obj cnt λ obj cnt λ obj cnt λ obj cnt

30 61 29 50 40 9-29 33 40 6.5 61∗ 24 5.5 55 27 5 61∗ 34 3.3 61∗ 28
30 75 32 66 80 8-32 66 70 9.4 75∗ 22 5.5 75∗ 26 6 75∗ 38 5.6 75∗ 60
30 54 32 48 170 9-32 46 180 14.3 40 38 7.5 47 51 8 48 74 7.4 47 166
30 64 35 41 50 13-35 52 60 36 32 37 5.2 56 42 5 64∗ 46 3.4 64∗ 32
30 56 34 46 60 11-34 44 60 32.5 38 25 5.5 56∗ 33 6 56∗ 37 4 56∗ 41
30 49 35 32 60 6-35 44 70 16 32 37 4 49∗ 36 4 49∗ 44 3.7 49∗ 43
30 48 32 43 80 6-32 44 80 16.7 34 26 9 44 34 6 46 49 4.8 48∗ 70
30 68 33 54 120 6-33 45 110 5 63 38 6.1 61 49 6 68∗ 58 5.5 68∗ 84
30 92 33 76 60 5-33 68 80 5.1 92∗ 24 5.3 92∗ 32 5 92∗ 38 4.6 92∗ 29
30 65 35 60 80 7-35 59 80 38 47 29 7.8 65∗ 30 7 65∗ 45 5.1 65∗ 62
30 99 39 89 120 11-39 89 120 56.5 41 27 7.5 99∗ 36 9 99∗ 46 7 99∗ 95
30 57 36 41 120 9-36 41 120 16.7 40 32 9.2 40 36 6 49 48 8.2 57∗ 88
30 56 31 44 60 5-31 54 60 8.9 48 17 6.3 56∗ 24 9 52 34 5.7 56∗ 45
30 64 31 54 180 10-31 54 150 40 54 38 7.5 61 54 8 63 74 5.1 64∗ 125
30 61 33 55 120 11-33 55 160 41 43 25 11.5 55 25 8 61∗ 42 6 61∗ 115
30 52 32 48 150 7-32 49 130 32 42 41 8 52∗ 48 6 52∗ 59 5.1 52∗ 122
30 69 40 42 180 9-40 60 160 6.9 62 38 10 46 43 7 69∗ 62 4.9 69∗ 138
30 74 35 45 160 14-35 49 100 21.7 39 53 5.2 74∗ 75 3 74∗ 86 2.8 74∗ 55
30 64 33 59 120 7-33 61 100 39.5 30 25 10 64∗ 25 7 64∗ 39 5.7 64∗ 97
30 80 38 67 80 6-38 80∗ 80 8.2 80∗ 26 10 80∗ 33 6 80∗ 44 5.5 80∗ 52
30 63 37 59 120 11-37 62 120 24 48 25 10.8 60 27 8 63∗ 49 7.7 63∗ 106
30 58 32 55 90 11-32 50 100 20.2 30 32 6 51 35 9 55 48 6.3 57 89
30 64 32 60 80 9-32 53 80 7.5 60 29 6 64∗ 41 5 64∗ 51 3.9 64∗ 69
30 57 33 57∗ 120 8-33 57∗ 120 9.5 57∗ 27 10 57∗ 29 7 57∗ 50 6.5 57∗ 120
30 50 29 38 90 8-29 48 100 31.5 33 26 5.5 48 38 7 49 39 5.2 49 77
30 53 33 47 80 6-33 47 60 14.1 46 32 7.1 53∗ 32 5 53∗ 40 4.9 53∗ 55
30 76 34 69 140 9-34 76∗ 120 25.7 53 31 7.7 76∗ 32 7 76∗ 56 7.1 76∗ 115
30 71 35 57 140 5-35 63 110 24.5 45 40 9 69 36 8 69 57 6.5 69 89
30 52 30 40 80 9-30 50 60 8.8 47 23 7 49 26 8 52∗ 32 5.3 52∗ 46
30 50 28 43 60 7-28 41 60 6.2 50∗ 22 5.2 50∗ 49 5 50∗ 32 4.8 50∗ 43
† The columns cnt are reported in thousands.

the iterative methods was 20. The INF for the objective function stands for infeasible and refers to

instances where SQA did not return a feasible solution.

5. Discussion

We proposed an iterative scheme for solving the Lagrangian dual of a constrained binary pro-

gramming problem using a quantum annealer. We have tested several settings of our iterative

method for a specific class of constrained binary programming problem, namely, the generalized

quadratic stable set (GQSS) problem. Our results show that the iterative methods outperformed

the theoretical bounds for this problem. The hybrid method, in particular, performed the best,

and could achieve the optimal solution in most of our test cases. Another important observation

from the results is that the modified Newtonian method overcomes the overshooting problem of

the step-size schedule in the Newtonian method. As the algorithm proceeds, xtAx approaches 0,

and xtWx may get larger, so the ratio xtWx
xtAx can jump to large values. Whereas this happens for
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Table 2. Experimental results using SQA.

prop1 prop2 new m-new incr hyb
n opt λ obj cnt λ obj cnt λ obj cnt λ obj cnt λ obj cnt λ obj cnt

30 61 29 45 200 9-29 58 200 5 58 60 6 55 200 7 61∗ 180 5.31 61∗ 200
30 75 32 75 220 8-32 53 220 24.25 59 60 6 75∗ 80 6 75∗ 200 5.7 75∗ 220
30 54 32 42 340 9-32 40 340 16.17 39 80 7.5 47 100 8 48 260 8.01 54∗ 340
30 64 35 56 180 13-35 INF 180 11.25 64∗ 80 6 64∗ 80 5 64∗ 180 5.64 64∗ 140
30 56 34 56 200 11-34 43 200 4.96 56∗ 60 9 49 200 5 56∗ 200 4.43 56∗ 140
30 49 35 47 160 6-35 33 160 16 49∗ 80 4.75 49∗ 120 4 49∗ 160 4.79 49∗ 140
30 48 32 45 200 6-32 41 200 30.5 36 80 5.75 48∗ 80 6 48∗ 200 5.75 48∗ 180
30 68 33 51 360 6-33 68∗ 360 7.83 63 60 7 68∗ 280 8 68∗ 240 7.35 68∗ 360
30 92 33 59 180 5-33 52 180 14 74 160 9.3 92∗ 60 5 92∗ 180 6.33 92∗ 140
30 65 35 60 300 7-35 62 300 16 56 160 7.83 60 60 6 65∗ 200 6.66 65∗ 300
30 99 39 90 300 11-39 90 300 56.5 62 80 7 99∗ 100 7 99∗ 220 9.37 99∗ 300
30 57 36 49 280 9-36 40 280 20.75 46 80 7.75 57∗ 60 8 57∗ 260 7.04 57∗ 280
30 56 31 49 300 5-31 42 300 15.67 35 60 6.5 56∗ 80 7 56∗ 220 6.54 56∗ 300
30 64 31 61 260 10-31 63 260 22 57 80 9 64∗ 100 9 64∗ 240 6.82 64∗ 260
30 61 33 37 300 11-33 59 300 9.42 59 60 11.5 59 60 12 59 280 7.46 61∗ 300
30 52 32 49 220 7-32 48 220 32 34 80 6 52∗ 60 6 52∗ 200 9.05 52∗ 220
30 69 40 69∗ 360 9-40 69∗ 360 6.94 69∗ 60 6.67 69∗ 60 7 69∗ 320 5.47 69∗ 360
30 74 35 53 160 14-35 INF 160 7.69 74∗ 60 3.82 74∗ 40 4 74∗ 160 3.87 74∗ 160
30 64 33 64∗ 360 7-33 62 360 39.5 47 80 10 59 60 7 64∗ 240 8.97 64∗ 360
30 80 38 67 180 6-38 62 180 8.2 80∗ 60 10 71 80 5 80∗ 180 6.15 80∗ 160
30 63 37 63∗ 360 11-37 59 360 40 63∗ 80 15.5 58 80 9 63∗ 260 8.1 63∗ 360
30 58 32 55 260 11-32 51 260 20.75 42 80 7.5 58∗ 100 8 57 260 8.71 58∗ 240
30 64 32 60 340 9-32 46 340 7.5 64∗ 140 6 64∗ 220 6 64∗ 220 6.19 64∗ 340
30 57 33 43 440 8-33 INF 440 37 36 80 9.75 54 160 11 54 300 11.1 57∗ 440
30 50 29 48 240 8-29 44 240 5.59 49 60 7.5 50∗ 300 12 39 240 8.21 50∗ 240
30 53 33 43 220 6-33 INF 220 11.88 53∗ 80 6.63 53∗ 60 6 53∗ 200 6.14 53∗ 220
30 76 34 61 260 9-34 76∗ 260 25.75 33 80 6.83 76∗ 60 7 76∗ 220 7.03 76∗ 260
30 71 35 63 340 5-35 65 340 26.25 60 120 9.38 71∗ 60 11 71∗ 260 8.76 71∗ 340
30 52 30 48 240 9-30 52∗ 240 8.83 52∗ 60 8 52∗ 100 7 52∗ 220 7.59 52∗ 240
30 50 28 41 220 7-28 41 220 11.25 38 100 6.83 50∗ 160 6 50∗ 220 5.91 50∗ 220

the Newtonian method, the modified variant of this method avoids this problem because the best

objective value observed for a feasible solution xf also improves, so xtWx−xfWxf stays minimal.

Since the Chimera graph is very sparse, problem instances in which the connectivity of W+A is a

subgraph of the Chimera graph are similarly sparse and often disconnected. Therefore, random test

instances of the GQSS problem that are native to the Chimera graph are not sufficiently difficult

for the purpose of our experiment.

It is worth mentioning that the performance of the outer approximation method of [18] for the

GQSS problem is similar to the penalty methods. In the outer approximation method, a linear

programming (LP) problem is initialized with a set of sufficiently large bounds (box constraints) on

the Lagrangian multipliers; iteratively, the solution of the LP problem is employed to form (Lλ,µ),

and, based on the solution of (Lλ,µ), a linear constraint (cut) is added to the LP problem; this

procedure is terminated when no new cuts are generated. For the GQSS problem, to ensure that

outer approximation returns the Lagrangian dual bound (instead of a looser lower bound), the box

constraint must be as large as the theoretical penalty value. The Lagrangian relaxation with this
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multiplier is the first (and only) slave unconstrained problem solved, and, consequently, the success

of this method is the same as that of the penalty methods. Therefore, [18] does not overcome the

deficiencies of the penalty methods when working with noisy quantum annealers.

Strong duality holds for the GQSS problem; thus, the subgradient method may be viewed as a

technique for finding smaller penalty coefficients that are instance dependent. In general, strong

duality does not hold for a constrained binary quadratic problem. Similar to the idea presented

in [18], we may employ the subgradient descent method within a branch-and-bound framework

as a bounding procedure to solve a general constrained binary quadratic programming problem.

However, missing the optimal solution can occasionally break the branch-and-bound framework by

obtaining an incorrect bound based on a suboptimal solution. A suitable recovery scheme, or a

guarantee for checking the optimality of a solution, is needed to successfully employ any of these

methods in a branch-and-bound framework. This nontrivial task is a subject for future study.
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