Skip to main content
Log in

Linear nearest neighbor optimization in quantum circuits: a multiobjective perspective

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Several current implementations of quantum circuits rely on the linear nearest neighbor restriction, which only allows interaction between adjacent qubits. Most methods that address the process of converting a generic circuit to an equivalent circuit which satisfies this restriction, minimize the number of additional SWAP gates required by this process. Moreover, most methods which address this problem are designed for 1D circuits. Considering the new and promising proposals for 2D quantum circuits, what we propose is a new perspective on this problem, namely that it can be seen as a multiobjective optimization problem. To test our hypothesis, we developed a multiobjective evolutionary algorithm that solves this problem by considering two objectives: minimizing the size of the 2D grid where the circuit is placed, and minimizing the number of additional SWAP gates. Of the methods designed for 2D circuits, only one considers different grid sizes which are much larger than strictly necessary. Consequently, our algorithm makes considerations which other methods do not make, since it naturally finds the grid which requires fewer SWAP gates for the circuit conversion, whether it is one-dimensional or two-dimensional. Our experimental results indicate that allowing a larger grid size results in fewer additional SWAP gates in about 73% of the tested circuits. Additionally, the average improvement we found when using larger grid sizes is about 30%, while the best improvement over using the smallest possible grid is 63.8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. AlFailakawi, M., Ahmad, I., Hamdan, S.: Lnn reversible circuit realization using fast harmony search based heuristic. In: Asia-Pacific Conference on Computer Science and Electrical Engineering (2014)

  2. AlFailakawi, M., AlTerkawi, L., Ahmad, I., Hamdan, S.: Line ordering of reversible circuits for linear nearest neighbor realization. Quantum Inf. Process. 12(10), 3319–3339 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alfailakawi, M.G., Ahmad, I., Hamdan, S.: Harmony-search algorithm for 2d nearest neighbor quantum circuits realization. Expert Syst. Appl. 61, 16–27 (2016)

    Article  Google Scholar 

  4. Amarilla, A., Lima, J., Baran, B.: An improved algorithm for quantum circuit lnn conversion. In: IARIA Ninth International Conference on Quantum, Nano/Bio, and MicroTechnologies—ICQNM2015 (2015)

  5. Beals, R., Brierley, S., Gray, O., Harrow, A.W., Kutin, S., Linden, N., Shepherd, D., Stather, M.: Efficient distributed quantum computing. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 469, p. 20120686. The Royal Society (2013)

  6. Cheung, D., Maslov, D., Severini, S.: Translation techniques between quantum circuit architectures. In: Workshop on Quantum Information Processing. Citeseer (2007)

  7. Córcoles, A., Magesan, E., Srinivasan, S.J., Cross, A.W., Steffen, M., Gambetta, J.M., Chow, J.M.: Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015). doi:10.1038/ncomms7979

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  9. Fowler, A., Devitt, S., Hollenberg, L.: Implementation of shor’s algorithm on a linear nearest neighbour qubit array. Quantum Inf. Comput. 4(quant–ph/0402196), 237–251 (2004)

    MathSciNet  MATH  Google Scholar 

  10. Frutos, L., Baran, B.: State of the art in the conversion of quantum circuits to the lnn architecture. In: IEEE ARANDUCON2012 (2012)

  11. Garigipati, R.C., Kumar, P.: Implementing gate operations between uncoupled qubits in linear nearest neighbor arrays using a learning algorithm. Quantum Inf. Process. 12(7), 2291–2308 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Goldberg, D.E.: Genetic Algorithms. Pearson Education India (2006)

  13. Häffner, H., Hänsel, W., Roos, C., Benhelm, J., Chwalla, M., Körber, T., Rapol, U., Riebe, M., Schmidt, P., Becher, C., et al.: Scalable multiparticle entanglement of trapped ions. Nature 438(7068), 643–646 (2005)

    Article  ADS  Google Scholar 

  14. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: Third International Conference on Quantum, Nano and Micro Technologies, 2009. ICQNM’09, pp. 26–33. IEEE (2009)

  15. Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2(3), 031007 (2012)

    Google Scholar 

  16. Kumar, P.: Efficient quantum computing between remote qubits in linear nearest neighbor architectures. Quantum Inf. Process. 12(4), 1737–1757 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kumph, M., Brownnutt, M., Blatt, R.: Two-dimensional arrays of radio-frequency ion traps with addressable interactions. New J. Phys. 13(7), 3043 (2011)

    Article  Google Scholar 

  18. Lin, C.C., Sur-Kolay, S., Jha, N.K.: Paqcs: physical design-aware fault-tolerant quantum circuit synthesis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(7), 1221–1234 (2015)

    Article  Google Scholar 

  19. von Lücken, C., Barán, B., Brizuela, C.: A survey on multi-objective evolutionary algorithms for many-objective problems. Comput. Optim. Appl. 58(3), 707–756 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Lye, A., Wille, R., Drechsler, R.: Determining the minimal number of swap gates for multi-dimensional nearest neighbor quantum circuits. In: 2015 20th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 178–183. IEEE (2015)

  21. Maslov, D., Dueck, G.W.: Improved quantum cost for n-bit toffoli gates. arXiv preprint quant-ph/0403053 (2004)

  22. Matsuo, A., Yamashita, S.: Changing the gate order for optimal lnn conversion. In: Reversible Computation, pp. 89–101. Springer, Berlin (2012)

  23. Meza, E., Fernandez, J., Baran, B., Lima, J.: A parallel approach to convert quantum circuits to an lnn architecture. In: IARIA Ninth International Conference on Quantum, Nano/Bio, and MicroTechnologies—ICQNM2015 (2015)

  24. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  25. Ohliger, M., Eisert, J.: Efficient measurement-based quantum computing with continuous-variable systems. Phys. Rev. A 85(6), 062318 (2012)

    Article  ADS  Google Scholar 

  26. Petit, J.: Experiments on the minimum linear arrangement problem. J. Exp. Algorithm. (JEA) 8, 2–3 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: Computing Conference (CLEI), 2015 Latin American, pp. 1–11. IEEE (2015)

  28. Ruffinelli, D., Baran, B.: A multiobjective approach to linear nearest neighbor optimization for 2d quantum circuits. In: CLEI 2016 (Latin American Conference on Informatics)—Latin American Symposium on Infrastructure, Hardware and Software (SLIHS’2016) (2016)

  29. Saeedi, M., Shafaei, A., Pedram, M.: Constant-factor optimization of quantum adders on 2d quantum architectures. In: International Conference on Reversible Computation, pp. 58–69. Springer, Berlin (2013)

  30. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quantum Inf. Process. 10(3), 355–377 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6(4), 13 (2010)

    Google Scholar 

  32. Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class of quantum gates. In: Proceedings of the 49th Annual Design Automation Conference, pp. 36–41. ACM, New York (2012)

  33. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. In: Proceedings of the 50th Annual Design Automation Conference, p. 41. ACM, New York (2013)

  34. Shafaei, A., Saeedi, M., Pedram, M.: Qubit placement to minimize communication overhead in 2d quantum architectures. In: 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 495–500. IEEE (2014)

  35. Shrivastwa, R.R., Datta, K., Sengupta, I.: Fast qubit placement in 2d architecture using nearest neighbor realization. In: 2015 IEEE International Symposium on Nanoelectronic and Information Systems, pp. 95–100. IEEE (2015)

  36. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: Revkit: a toolkit for reversible circuit design. Multiple Valued Log. Soft Comput. 18(1), 55–65 (2012)

    Google Scholar 

  37. Spedalieri, F.M., Roychowdhury, V.P.: Latency in local, two-dimensional, fault-tolerant quantum computing. arXiv preprint arXiv:0805.4213 (2008)

  38. Strauch, F.W., Johnson, P.R., Dragt, A.J., Lobb, C., Anderson, J., Wellstood, F.: Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91(16), 167005 (2003)

    Article  ADS  Google Scholar 

  39. Takahashi, Y., Kunihiro, N., Ohta, K.: The quantum fourier transform on a linear nearest neighbor architecture. Quantum Inf. Comput. 7(4), 383–391 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: Revlib: An online resource for reversible functions and reversible circuits. In: 38th International Symposium on Multiple Valued Logic, 2008. ISMVL 2008, pp. 220–225. IEEE (2008)

  41. Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A., Drechsler, R.: Look-ahead schemes for nearest neighbor optimization of 1d and 2d quantum circuits. In: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 292–297. IEEE (2016)

  42. Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 33(12), 1818–1831 (2014)

    Article  Google Scholar 

  43. Wineland, D.J., Barrett, M., Britton, J., Chiaverini, J., DeMarco, B., Itano, W., Jelenković, B., Langer, C., Leibfried, D., Meyer, V., et al.: Quantum information processing with trapped ions. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 361(1808), 1349–1361 (2003)

    Article  ADS  MATH  Google Scholar 

  44. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to the Nara Institute of Science and Technology (NIST), specifically to Yasuhiko Nakashima, Hiroyuki Seki, Masaki Nakanishi, Shigueru Yamashita and Yuishi Hirata for motivating this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ruffinelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruffinelli, D., Barán, B. Linear nearest neighbor optimization in quantum circuits: a multiobjective perspective. Quantum Inf Process 16, 220 (2017). https://doi.org/10.1007/s11128-017-1662-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1662-3

Keywords

Navigation