Skip to main content
Log in

Effects of partial-collapse measurement on the parameter-estimation precision of noisy quantum channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

An efficient method is proposed to enhance the parameter-estimation precision for noisy quantum channels based on measurement reversal from partial-collapse measurement. It is shown that the quantum Fisher information can be distinctly improved for amplitude-damping channel, phase-damping channel and depolarizing channel with partial-collapse measurement. This also means that choosing the appropriate measurement strengths can lead to higher precision of estimation on noisy quantum channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Fujiwara, A.: Phys. Rev. A 63, 042304 (2001)

    Article  ADS  Google Scholar 

  3. Fujiwara, A.: Quantum channel identification problem. Phys. Rev. A 63, 042304 (2001)

    Article  ADS  Google Scholar 

  4. Fischer, D.G., Mack, H., Cirone, M.A., Freyberger, M.: Phys. Rev. A 64, 022309 (2001)

    Article  ADS  Google Scholar 

  5. Cirone, M.A., Delgado, A., Fischer, D.G., Freyberger, M., Mack, H., Mussinger, M.: e-print quant-ph/0108037

  6. Chiuri, A., Rosati, V., Vallone, G., Padua, S., Imai, H., Giacomini, S., Macchiavello, C., Mataloni, P.: Phys. Rev. Lett. 107, 253602 (2011)

    Article  ADS  Google Scholar 

  7. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    MATH  Google Scholar 

  8. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  9. Hubner, M.: Phys. Lett. A 163, 239 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. Hubner, M.: Phys. Lett. A 179, 226 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. Helstrom, C.W.: Phys. Lett. A 25, 101 (1967). IEEE Trans. Inf. Theory 14, 234 (1968)

    Article  MathSciNet  Google Scholar 

  13. Watanabe, Y., Sagawa, T., Ueda, M.: Phys. Rev. Lett. 104, 020401 (2010)

    Article  ADS  Google Scholar 

  14. Lu, X.M., Wang, X.G., Sun, C.P.: Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  15. Sun, Z., Ma, J., Lu, X.M., Wang, X.G.: Phys. Rev. A 82, 022306 (2010)

    Article  ADS  Google Scholar 

  16. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezze, L., Smerzi, A.: Phys. Rev. A 85, 022321 (2012)

    Article  ADS  Google Scholar 

  17. Sun, Z., Ma, J., Lu, X.M., Wang, X.: Phys. Rev. A 82, 022306 (2010)

    Article  ADS  Google Scholar 

  18. Ma, J., Huang, Y.X., Wang, X., Sun, C.P.: Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  19. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  20. Xiang, G.Y., Higgins, B.L., Berry, D.W., Wiseman, H.M., Pryde, G.J.: Nat. Photonics 5, 43 (2011)

    Article  ADS  Google Scholar 

  21. Zhang, L.J., Xiao, M.: Chin. Phys. B 22, 110310 (2013)

    Article  ADS  Google Scholar 

  22. Berrada, K.: Phys. Rev. A 88, 035806 (2013)

    Article  ADS  Google Scholar 

  23. Watanable, Y., Sagawa, T., Ueda, M.: Phys. Rev. Lett. 104, 020401 (2010)

    Article  ADS  Google Scholar 

  24. Tan, Q.S., Huang, Y., Yin, X., Kuang, L.M., Wang, X.: Phys. Rev. A 87, 032102 (2013)

    Article  ADS  Google Scholar 

  25. Liu, J., Jing, X., Wang, X.: Phys. Rev. A 88, 042316 (2013)

    Article  ADS  Google Scholar 

  26. Pezze, L., Smerzi, A.: Phys. Rev. Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Li, N., Luo, S.L.: Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  28. Ma, J., Wang, X.G., Sun, C.P., Nori, F.: Phys. Rep. 509, 89 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, X.G., Miranowicz, A., Liu, Y.X., Sun, C.P., Nori, F.: Phys. Rev. A 81, 022106 (2010)

    Article  ADS  Google Scholar 

  30. Sun, Z.: Phys. Rev. A 84, 052307 (2011)

    Article  ADS  Google Scholar 

  31. Wang, T.L., Wu, L.N., Yang, W., Jin, G.R., Lambert, N., Nori, F.: arXiv:1312.1426

  32. Katz, N., et al.: Science 312, 1498 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. Blok, M.S., Bonato, C., Markham, M.L., Twitchen, D.J., Dobrovitski, V.V., Hanson, R.: Nat. Phys. 10, 189 (2014)

    Article  Google Scholar 

  34. Sun, Q.Q., Al-Amri, M., Zubairy, M.S.: Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  35. Man, Z.X., Xia, Y.J., An, N.B.: Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  36. Liao, X.P., Ding, X.Z., Fang, M.F.: Quantum Inf. Process. 14, 4395 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. Katz, N., et al.: Phys. Rev. Lett. 101, 200401 (2008)

    Article  ADS  Google Scholar 

  38. Kim, Y.S., Cho, Y.W., Ra, Y.S., Kim, Y.H.: Opt. Express 17, 11978 (2009)

    Article  ADS  Google Scholar 

  39. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  40. Xiao, X., Yao, X., Zhong, W.J., Li, Y.L., Xie, Y.M.: Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  41. Knee, G.C., Briggs, G.A.D., Benjamin, S.C., Gauger, E.M.: Phys. Rev. A 87, 012115 (2013)

    Article  ADS  Google Scholar 

  42. Tanaka, S., Yamamoto, N.: Phys. Rev. A 88, 042116 (2013)

    Article  ADS  Google Scholar 

  43. Ferrie, C., Combes, J.: arXiv:1306.6321v1 (2013)

  44. Combes, J., Ferrie, C., Jiang, Z., Caves, C. M.: arXiv:1309.6620v1 (2013)

  45. Zhang, L., Datta, A., Walmsley, I. A.: arXiv:1310.5302v1 (2013)

  46. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Phys. Rev. A 89, 022318 (2014)

  47. Ricci, M., De Martini, F., Cerf, N.J., Filip, R., Fiurasek, J., Macchiavello, C.: Phys. Rev. Lett. 93, 170501 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11374096 and 11604094), the Natural Science Foundation of Hunan Province of China (Grant No. 2016JJ2044) and the Major Program for the Research Foundation of Education Bureau of Hunan Province of China (Grant No. 16A057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Ping Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, XP., Fang, MF. & Zhou, X. Effects of partial-collapse measurement on the parameter-estimation precision of noisy quantum channels. Quantum Inf Process 16, 241 (2017). https://doi.org/10.1007/s11128-017-1696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1696-6

Keywords

Navigation