Skip to main content
Log in

Online evolution reconstruction from a single measurement record with random time intervals for quantum communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Online reconstruction of a time-variant quantum state from the encoding/decoding results of quantum communication is addressed by developing a method of evolution reconstruction from a single measurement record with random time intervals. A time-variant two-dimensional state is reconstructed on the basis of recovering its expectation value functions of three nonorthogonal projectors from a random single measurement record, which is composed from the discarded qubits of the six-state protocol. The simulated results prove that our method is robust to typical metro quantum channels. Our work extends the Fourier-based method of evolution reconstruction from the version for a regular single measurement record with equal time intervals to a unified one, which can be applied to arbitrary single measurement records. The proposed protocol of evolution reconstruction runs concurrently with the one of quantum communication, which can facilitate the online quantum tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Paris, M., Řeháček, J. (eds.): Quantum State Estimation. Lecture Notes in Physics, vol. 649. Springer, Berlin (2004)

  2. Lvovsky, A.I., Raymer, M.G.: Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 1 (2009)

    Article  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary Edition. Cambridge University Press, Beijing (2015)

    MATH  Google Scholar 

  4. Averbukh, I.S., Shapiro, M., Leichtle, C., Schleich, W.P.: Reconstructing wave packets by quantum-state holography. Phys. Rev. A 59, 3 (1999)

    Google Scholar 

  5. Khanna, F.C., Mello, P.A., Revzen, M.: Classical and quantum-mechanical state reconstruction. Eur. J. Phys. 33, 921–939 (2012)

    Article  MATH  Google Scholar 

  6. Madhok, V., Riofrío, C.A., Deutsch, I.H.: Review: characterizing and quantifying quantum chaos with quantum tomography. Pramana J. Phys. 87, 65 (2016)

    Article  ADS  Google Scholar 

  7. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244 (1993)

    Article  ADS  Google Scholar 

  8. Ourjoumtsev, A., Tualle-Brouri, R., Grangier, P.: Quantum homodyne tomography of a two-photon Fock state. Phys. Rev. Lett. 96, 213601 (2006)

    Article  ADS  Google Scholar 

  9. Deléglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, M., Raimond, J.M., Haroche, S.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 07288 (2008)

    Article  Google Scholar 

  10. Steffens, A., Riofrío, C.A., Hübener, R., Eisert, J.: Quantum field tomography. New J. Phys. 16, 123010 (2014)

    Article  ADS  Google Scholar 

  11. Foreman, M.R., Favaro, A., Aiello, A.: Optimal frames for polarization state reconstruction. Phys. Rev. Lett. 115, 263901 (2015)

    Article  ADS  Google Scholar 

  12. Yin, Q., Li, L., Xiang, X., Xiang, G.Y., Li, C.F., Guo, G.C.: Experimental demonstration of real-time adaptive one-qubit quantum-state tomography. Phys. Rev. A 95, 012129 (2017)

    Article  ADS  Google Scholar 

  13. Altepeter, J.B., Branning, D., Jeffrey, E., Wei, T.C., Kwiat, P.G., Thew, R.T., O’Brien, J.L., Nielsen, M.A., White, A.G.: Ancilla-assisted quantum process tomography. Phys. Rev. Lett. 90, 193601 (2003)

    Article  ADS  Google Scholar 

  14. Mohseni, M., Lidar, D.A.: Direct characterization of quantum dynamics. Phys. Rev. Lett. 97, 170501 (2006)

    Article  ADS  Google Scholar 

  15. Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77, 032322 (2008)

    Article  ADS  Google Scholar 

  16. Bialczak, R.C., et al.: Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits. Nat. Phys. 6, 409 (2010)

    Article  Google Scholar 

  17. Merkel, S.T., Gambetta, J.M., Smolin, J.A., Poletto, S., Córcoles, A.D., Johnson, B.R., Ryan, C.A., Steffen, M.: Self-consistent quantum process tomography. Phys. Rev. A 87, 062119 (2013)

    Article  ADS  Google Scholar 

  18. Omkar, S., Srikanth, R., Banerjee, S.: Characterization of quantum dynamics using quantum error correction. Phys. Rev. A 91, 012324 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kim, D., Shi, Z., et al.: Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70 (2014)

    Article  ADS  Google Scholar 

  20. Dumitrescu, E., Humble, T.S.: Discrimination of correlated and entangling quantum channels with selective process tomography. Phys. Rev. A 94, 042107 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Pogorelov, I.A., Struchalin, G.I., Straupe, S.S., Radchenko, I.V., Kravtsov, K.S., Kulik, S.P.: Experimental adaptive process tomography. Phys. Rev. A 95, 012302 (2017)

    Article  ADS  Google Scholar 

  22. Ralph, J.F., Jacobs, K., Hill, C.D.: Frequency tracking and parameter estimation for robust quantum state estimation. Phys. Rev. A 84, 052119 (2011)

    Article  ADS  Google Scholar 

  23. Gutzeit, R., Wallentowitz, S., Vogel, W.: Reconstructing the time evolution of a quantized oscillator. Phys. Rev. A 61, 062105 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Cole, J.H., et al.: Identifying an experimental two-state Hamiltonian to arbitrary accuracy. Phys. Rev. A 71, 062312 (2005)

    Article  ADS  Google Scholar 

  25. Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Ralph, J.F., Combes, J., Wiseman, H.M.: An interleaved sampling scheme for the characterization of single qubit dynamics. Quantum Inf. Process. 11, 1523–1531 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sayrin, C., Dotsenko, I., Gleyzes, S., Brune, M., Raimond, J.M.: Optimal time-resolved photon number distribution reconstruction of a cavity field by maximum likelihood. New J. Phys. 14, 115007 (2012)

    Article  ADS  Google Scholar 

  28. Liu, Z., Cavaletto, S.M., et al.: Phase reconstruction of strong-field excited systems by transient-absorption spectroscopy. Phys. Rev. Lett. 115, 033003 (2015)

    Article  ADS  Google Scholar 

  29. Chen, J., Wu, G., et al.: Stable quantum key distribution with active polarization control based on time-division multiplexing. New J. Phys. 11, 065004 (2009)

    Article  ADS  Google Scholar 

  30. Xavier, G.B., Walenta, N., et al.: Experimental polarization encoded quantum key distribution over optical fibers with real-time continuous birefringence compensation. New J. Phys. 11, 045015 (2009)

    Article  ADS  Google Scholar 

  31. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  33. Zhou, H., Wang, R., Zhu, Y., Su, Y., Xu, Z., Wang, J., Shen, H., Li, J., Xiang, P., Zhang, B.: Representing expectation values of projectors as series for evolution reconstruction. Quantum Inf. Process. 15, 5155–5165 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Tamaki, K., Koashi, M., Imoto, N.: Security of the Bennett 1992 quantum-key distribution protocol against individual attack over a realistic channel. Phys. Rev. A 67, 032310 (2003)

    Article  ADS  Google Scholar 

  35. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 3 (2009)

    Article  Google Scholar 

  36. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81(14), 3018–3021 (1998)

    Article  ADS  Google Scholar 

  37. Steuernagel, O., Vaccaro, J.A.: Reconstructing the density operator via simple projectors. Phys. Rev. Lett. 75, 18 (1995)

    Article  Google Scholar 

  38. Peng, C.Z., et al.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007)

    Article  ADS  Google Scholar 

  39. Schmitt-Manderbach, T., Weier, H., Fürst, M., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  40. Hao, Y., Yang, H.: Principle and Technology of Quantum Communication. Electronic Industry Press, Beijing (2013)

    Google Scholar 

Download references

Acknowledgements

Our work was supported by the National Natural Science Foundation of China (Nos. 11404407 and 61371121) and the Natural Science Foundation of Jiangsu Province (Nos. BK20140072, BK20161471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Su, Y., Wang, R. et al. Online evolution reconstruction from a single measurement record with random time intervals for quantum communication. Quantum Inf Process 16, 247 (2017). https://doi.org/10.1007/s11128-017-1700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1700-1

Keywords

Navigation