Skip to main content
Log in

Playing distributed two-party quantum games on quantum networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper investigates quantum games between two remote players on quantum networks. We propose two schemes for distributed remote quantum games: the client–server scheme based on states transmission between nodes of the network and the peer-to-peer scheme devised upon remote quantum operations. Following these schemes, we construct two designs of the distributed prisoners’ dilemma game on quantum entangling networks, where concrete methods are employed for teleportation and nonlocal two-qubits unitary gates, respectively. It seems to us that the requirement for playing distributed quantum games on networks is still an open problem. We explore this problem by comparing and characterizing the two schemes from the viewpoints of network structures, quantum and classical operations, experimental realization and simplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramanathan, R., Quintino, M.T., Sainz, A.B., Murta, G., Augusiak, R.: Tightness of correlation inequalities with no quantum violation. Phys. Rev. A 95, 012139 (2017)

    Article  ADS  Google Scholar 

  2. Swiecicki, I., Gobron, T., Ullmo, D.: Schrodinger approach to mean field games. Phys. Rev. Lett. 116, 128701 (2016)

    Article  ADS  Google Scholar 

  3. Situ, H.: Two-player conflicting interest bayesian games and bell nonlocality. Quantum Inf. Process. 15, 137 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Sikora, J., Chailloux, A., Kerenidis, I.: Strong connections between quantum encodings, nonlocality, and quantum cryptography. Phys. Rev. A 89, 022334 (2014)

    Article  ADS  Google Scholar 

  5. Arrazola, J.M., Karasamanis, M., Lutkenhaus, N.: Practical quantum retrieval games. Phys. Rev. A 93, 062311 (2016)

    Article  ADS  Google Scholar 

  6. Chailloux, A., Kerenidis, I., Kundu, S., Sikora, J.: Optimal bounds for parity-oblivious random access codes. New J. Phys. 18, 045003 (2016)

    Article  ADS  MATH  Google Scholar 

  7. Khan, F.S.: Dominant strategies in two-qubit quantum computations. Quantum Inf. Process. 14, 1799 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Murta, G., Ramanathan, R., Moller, N., Cunha, M.T.: Quantum bounds on multiplayer linear games and device-independent witness of genuine tripartite entanglement. Phys. Rev. A 3, 022305 (2016)

    Article  ADS  Google Scholar 

  9. Pappa, A., Kumar, N., Lawson, T., Santha, M., Zhang, S., Diamanti, E., Kerenidis, I.: Nonlocality and conflicting interest games. Phys. Rev. Lett. 114, 020401 (2015)

    Article  ADS  Google Scholar 

  10. Deng, X., Deng, Y., Liu, Q., Shi, L., Wang, Z.: Quantum games of opinion formation based on the marinatto-weber quantum game scheme. EPL 114, 50012 (2016)

    Article  ADS  Google Scholar 

  11. Wu, H.: Quantum mechanism helps agents combat “bad” social choice rules. Int. J. Quantum Inf. 9, 615 (2011)

    Article  MATH  Google Scholar 

  12. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Flitney, A.P., Abbott, D.: Advantage of a quantum player over a classical one in \(2\times 2\) quantum games. Proc. R. Soc. Lond. A 459: 2463 (2003)

  14. Melo-Luna, C.A., Susa, C.E., Ducuara, A.F., Barreiro, A., Reina, J.H.: Quantum locality in game strategy. Sci. Rep. 7, 44730 (2017)

    Article  ADS  Google Scholar 

  15. Bang, J., Ryu, J., Pawlowski, M., Ham, B.S., Lee, J.: Quantum-mechanical machinery for rational decision-making in classical guessing game. Sci. Rep. 6, 21424 (2016)

    Article  ADS  Google Scholar 

  16. Alid-Vaccarezza, M., Soto, M.E.: Bayesian Nash equilibria using extended Werner-like states. Quantum Inf. Process. 15, 4337 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Frackiewicz, P.: Remarks on quantum duopoly schemes. Quantum Inf. Process. 15, 121 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Weng, G.-F., Yu, Y.: Playing quantum games with disentanglement-free state. Fluct. Noise Lett. 15, 1650002 (2016)

    Article  ADS  Google Scholar 

  19. Bolonek-Lason, K.: General quantum two-player games, their gate operators, and nash equilibria. In: Progress of Theoretical and Experimental Physics 023a03 (2015)

  20. Weng, G.-F., Yu, Y.: Playing quantum games by a scheme with pre- and post-selection. Quantum Inf. Process. 15, 147 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Alonso-Sanz, R.: Variable entangling in a quantum prisoner’s dilemma cellular automaton. Quantum Inf. Process. 14, 147 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Pivoluska, M., Plesch, M.: An explicit classical strategy for winning a chshq game. New J. Phys. 18, 025013 (2016)

    Article  ADS  Google Scholar 

  23. Balakrishnan, S., Sankaranarayanan, R.: Classical rules and quantum strategies in penny flip game. Quantum Inf. Process. 12, 1261 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Huang, Z., Alonso-Sanz, R., Situ, H.: Quantum samaritan’s dilemma under decoherence. Int. J. Theor. Phys. 56, 863 (2017)

    Article  MATH  Google Scholar 

  25. Liao, X.-P., Ding, X.-Z., Fang, M.-F.: Improving the payoffs of cooperators in three-player cooperative game using weak measurements. Quantum Inf. Process. 14, 4395 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Gawron, P., Kurzyk, D., Pawela, L.: Decoherence effects in the quantum qubit flip game using markovian approximation. Quantum Inf. Process. 13, 665 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, A., Yong, X.: Dynamics, morphogenesis and convergence of evolutionary quantum prisoner’s dilemma games on networks. Proc. R. Soc. Math. Phys. Eng. Sci. 472, 20150280 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Zhou, X.-F., Guo, F.-Z., Zhang, K.-J.: Quantum coalition of “N equipartition” compound mode in minority game. Int. J. Theor. Phys. 54, 2549 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kimble, H.J.: The quantum internet. Nature (London) 453, 1023 (2008)

    Article  ADS  Google Scholar 

  30. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165 (2007)

    Article  ADS  Google Scholar 

  31. Acin, A., Cirac, J.I., Lewenstein, M.: Entanglement percolation in quantum networks. Nat. Phys. 3, 256 (2007)

    Article  Google Scholar 

  32. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Theoretical framework for quantum networks. Phys. Rev. A 80, 022339 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Pawela, Ł., Sładkowski, J.: Quantum prisoners dilemma game on hypergraph networks. Phys. A 392, 910 (2013)

    Article  Google Scholar 

  35. Li, Q., Chen, M., Perc, M., Iqbal, A., Abbott, D.: Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks. Sci. Rep. 3, 2949 (2013)

    Article  ADS  Google Scholar 

  36. Pawela, Ł.: Quantum games on evolving random networks. Phys. Stat. Mech. Appl. 458, 179 (2016)

    Article  MathSciNet  Google Scholar 

  37. Pirandola, S.: A quantum teleportation game. Int. J. Quantum Inf. 03, 239 (2005)

    Article  MATH  Google Scholar 

  38. Rass, S., Schartner, P.: Game-theoretic security analysis of quantum networks. In: 2009 Third International Conference on Quantum, Nano and Micro Technologies p. 20 (2009)

  39. Tomamichel, M., Fehr, S., Kaniewski, J., Wehner, S.: One-sided device-independent QKD and position-based cryptography from monogamy games. Advances in Cryptology - Eurocrypt 2013, p. 609 (2013)

  40. Eisert, J., Wilkens, M.: Quantum games. J. Mod. Opt. 47, 2543 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Bolonek-Lason, K., Kosinski, P.: Some properties of the maximally entangled Eisert–Wilkens–Lewenstein game. Prog. Theor. Exp. Phys. 7, 073a02 (2013)

  42. Huang, Z., Qiu, D.: Quantum games under decoherence. Int. J. Theor. Phys. 55, 965 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Duan, L.-M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209 (2010)

    Article  ADS  Google Scholar 

  44. Yonezawa, H., Aoki, T., Furusawa, A.: Demonstration of a quantum teleportation network for continuous variables. Nature (London) 431, 430 (2004)

    Article  ADS  Google Scholar 

  45. Su, X., Jia, X., Xie, C., Peng, K.: Preparation of multipartite entangled states used for quantum information networks. Sci. Chin. Phys. Mech. Astron. 57, 1210 (2014)

    Article  ADS  Google Scholar 

  46. Sun, Q.-C., Mao, Y.-L., Chen, S.-J., Zhang, W., Jiang, Y.-F., Zhang, Y.-B., Zhang, W.-J., Miki, S., Yamashita, T., Terai, H., Jiang, X., Chen, T.-Y., You, L.-X., Chen, X.-F., Wang, Z., Fan, J.-Y., Zhang, Q., Pan, J.-W.: Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photon 10, 671 (2016)

    Article  ADS  Google Scholar 

  47. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Yu, L., Griffiths, R.B., Cohen, S.M.: Efficient implementation of bipartite nonlocal unitary gates using prior entanglement and classical communication. Phys. Rev. A 81, 062315 (2010)

    Article  ADS  Google Scholar 

  49. Marinatto, L., Weber, T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413 (2001)

    Article  ADS  Google Scholar 

  51. Kuzmich, A., Bowen, W.P., Boozer, A.D., Boca, A., Chou, C.W., Duan, L.M., Kimble, H.J.: Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature (London) 423, 731 (2003)

    Article  ADS  Google Scholar 

  52. Hammerer, K., Sorensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041 (2010)

    Article  ADS  Google Scholar 

  53. Kubo, Y., Grezes, C., Dewes, A., Umeda, T., Isoya, J., Sumiya, H., Morishita, N., Abe, H., Onoda, S., Ohshima, T., Jacques, V., Dréau, A., Roch, J.F., Diniz, I., Auffeves, A., Vion, D., Esteve, D., Bertet, P.: Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. Phys. Rev. Lett. 107, 220501 (2011)

    Article  ADS  Google Scholar 

  54. Li, Y., Shi, T., Chen, B., Song, Z., Sun, C.P.: Quantum-state transmission via a spin ladder as a robust data bus. Phys. Rev. A 71, 022301 (2005)

    Article  ADS  Google Scholar 

  55. Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature (London) 449, 443 (2007)

    Article  ADS  Google Scholar 

  56. Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  57. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Quantum teleportation between distant matter qubits. Science 323, 486 (2009)

    Article  ADS  Google Scholar 

  58. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  59. Dai, H.-Y., Chen, P.-X., Liang, L.-M., Li, C.-Z.: Classical communication cost and remote preparation of the four-particle ghz class state. Phys. Lett. A 355, 285 (2006)

    Article  ADS  Google Scholar 

  60. Dai, H.-Y., Zhang, M., Kuang, L.-M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)

    Article  ADS  Google Scholar 

  61. Duan, L.-M., Madsen, M., Moehring, D., Maunz, P., Kohn Jr., R., Monroe, C.: Probabilistic quantum gates between remote atoms through interference of optical frequency qubits. Phys. Rev. A 73, 062324 (2006)

    Article  ADS  Google Scholar 

  62. Nielsen, M.A., Chuang, I.L.: Programmable quantum gate arrays. Phys. Rev. Lett. 79, 321 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Huelga, S.F., Plenio, M.B., Xiang, G.-Y., Li, J., Guo, G.-C.: Remote implementation of quantum operations. J. Opt. B: Quantum Semiclassical Opt. 7, S384 (2005)

    Article  Google Scholar 

  64. Zhao, N.B., Wang, A.M.: Local implementation of nonlocal operations with block forms. Phys. Rev. A 78, 014305 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Yokoyama, S., Ukai, R., Yoshikawa, J.-I., Marek, P., Filip, R., Furusawa, A.: Nonlocal quantum gate on quantum continuous variables with minimal resources. Phys. Rev. A 90, 012311 (2014)

    Article  ADS  Google Scholar 

  66. Frackiewicz, P.: A new quantum scheme for normal-form games. Quantum Inf. Process. 14, 1809 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Program for National Natural Science Foundation of P. R. China (Grant Nos. 61673389, 61273202 and 61134008)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Appendices

Appendix A: Game process of the example based on the client–server scheme

  1. 1.

    The referee of the game applies quantum gate \(J(\gamma )=\exp (-i\gamma \sigma _y\otimes \sigma _y )\) on the qubits CA1 and CB1. This operation can transform the tensor product state \(|0_{CA1}\rangle \otimes |0_{CB1}\rangle \) into an entangled state

    $$\begin{aligned} |\psi _{in}\rangle =J(\gamma ) \left( |0_{CA1}\rangle \otimes |0_{CB1} \rangle \right) = \cos \frac{\gamma }{2} |0_{CA1}0_{CB1}\rangle + i \sin \frac{\gamma }{2} |1_{CA1}1_{CB1}\rangle .\nonumber \\ \end{aligned}$$
    (1)
  2. 2.

    The referee teleports quantum state \(|\psi _{in}\rangle \) to the players with the help of two ancillary EPR pairs, \(|\psi _{A1}\rangle =\frac{1}{\sqrt{2}} \left( |0_{A}0_{A1}\rangle +|1_{A}1_{A1}\rangle \right) \) and \(|\psi _{B1}\rangle =\frac{1}{\sqrt{2}} \left( |0_{B}0_{B1}\rangle +|1_{B}1_{B1}\rangle \right) \). The referee conducts CNOT gates on qubit pairs (CA1, A1) and (CB1, B1) and then performs projective measurements on them. Through classical channels, the measurement results (lk) and (mn) are sent to Alice and Bob, respectively. With these results, Alice performs \({\sigma _z}^k_A{\sigma _x}^l_A\) on qubit A and Bob performs \({\sigma _z}^n_B{\sigma _x}^m_B\) on qubit B. After the teleportation process, the system will be in state

    $$\begin{aligned} |\psi _{CT}\rangle= & {} |\psi _{T}\rangle \otimes |k_{CA1}l_{A1}\rangle \otimes | m_{CB1}n_{B1}\rangle \nonumber \\= & {} \left( \cos \frac{\gamma }{2} |0_A0_B\rangle + i \sin \frac{\gamma }{2} |1_A1_B\rangle \right) \otimes |k_{CA1}l_{A1}\rangle \otimes |m_{CB1}n_{B1}\rangle . \end{aligned}$$
    (2)

    where k, l, m, \(n=0\), 1.

  3. 3.

    According to their strategies, Alice and Bob apply local operators \(U_A\) and \(U_B\) to qubits A and B, respectively. Corresponding to the local quantum prisoners’ dilemma game, the strategy space of players is restricted to the 2-parameter set of unitary \(2\times 2\) matrices, \(U_A=U_P (\theta _A,\phi _A )\) and \(U_B=U_P (\theta _B,\phi _B )\), where

    $$\begin{aligned} U_P(\theta , \phi ) = \left[ \begin{array}{cc} e^{i\phi }\cos \frac{\theta }{2} &{} \sin \frac{\theta }{2} \\ -\sin \frac{\theta }{2} &{} e^{-i\phi }\cos \frac{\theta }{2} \\ \end{array} \right] . \end{aligned}$$
    (3)

    Hence the final state of qubits A and B in this step can be denoted as follows

    $$\begin{aligned} |\psi _{S}\rangle= & {} (U_A \otimes U_B) |\psi _T\rangle \nonumber \\= & {} a|0_A0_B\rangle +b|0_A1_B\rangle +c|1_A0_B\rangle +d|1_A1_B\rangle , \end{aligned}$$
    (4)

    where

    $$\begin{aligned} a=&e^{i(\phi _A+\phi _B)}\cos \frac{\gamma }{2} \cos \frac{\theta _A}{2} \cos \frac{\theta _B}{2} +i \sin \frac{\gamma }{2} \sin \frac{\theta _A}{2} \sin \frac{\theta _B}{2}, \nonumber \\ b=&-e^{i\phi _A}\cos \frac{\gamma }{2} \cos \frac{\theta _A}{2} \sin \frac{\theta _B}{2} +i e^{-i\phi _B} \sin \frac{\gamma }{2} \sin \frac{\theta _A}{2} \cos \frac{\theta _B}{2}, \nonumber \\ c=&-e^{i\phi _B}\cos \frac{\gamma }{2} \sin \frac{\theta _A}{2} \cos \frac{\theta _B}{2} +i e^{-i\phi _A} \sin \frac{\gamma }{2} \cos \frac{\theta _A}{2} \sin \frac{\theta _B}{2}, \nonumber \\ d=&\cos \frac{\gamma }{2} \sin \frac{\theta _A}{2} \sin \frac{\theta _B}{2} +i e^{-i(\phi _A+\phi _B)}\sin \frac{\gamma }{2} \cos \frac{\theta _A}{2} \cos \frac{\theta _B}{2}. \end{aligned}$$
    (5)
  4. 4.

    Players teleport the states of qubits A and B back to the local qubits of the referee, CA2 and CB2. The procedure is similar to what we introduced in step 2, and the ancillary EPR pairs are now \(|\psi _{A2}\rangle = \frac{1}{\sqrt{2}} ( |0_{CA2}0_{A2}\rangle + |1_{CA2}1_{A2}\rangle )\) and \(|\psi _{B2}\rangle = \frac{1}{\sqrt{2}} ( |0_{CB2}0_{B2}\rangle + |1_{CB2}1_{B2}\rangle )\), respectively. Qubits CA2 and CB2 are turned into the following state:

    $$\begin{aligned} |\psi _{T2}\rangle =&a|0_{CA2}0_{CB2}\rangle +b|0_{CA2}1_{CB2}\rangle +c|1_{CA2}0_{CB2}\rangle +d|1_{CA2}1_{CB2}\rangle . \end{aligned}$$
    (6)
  5. 5.

    The referee applies the conjugate operator of \(J(\gamma )\) to the entangled qubits CA2 and CB2 as the postoperation, which leads to the final state

    $$\begin{aligned} |\psi _{fin}\rangle= & {} \cos \frac{\gamma }{2} ( a|0_{CA2}0_{CB2}\rangle +b|0_{CA2}1_{CB2}\rangle +c|1_{CA2}0_{CB2}\rangle +d|1_{CA2}1_{CB2}\rangle ) \nonumber \\&- i \sin \frac{\gamma }{2}( a|1_{CA2}1_{CB2}\rangle -b|1_{CA2}0_{CB2}\rangle -c|0_{CA2}1_{CB2}\rangle +d|0_{CA2}1_{CB2}\rangle ).\nonumber \\ \end{aligned}$$
    (7)
  6. 6.

    By measuring \(|\psi _{fin}\rangle \), the referee calculates payoffs of players from the measurement result according to the payoff matrix of the game.

Appendix B: Game process of the example based on the peer-to-peer scheme

  1. 1.

    With an ancillary EPR pair of state \(|\psi _1\rangle \), Alice and Bob conduct a nonlocal operation \(J(\gamma )=\exp \left( -i\gamma {\sigma _y}_A \otimes {\sigma _y}_B \right) \) on the tensor product state \(|0_A\rangle \otimes |0_B\rangle \) of qubits A and B. In this step, Alice should successively perform on her local qubits two controlled unitary operators, \(U_{YA1}=I_A \otimes |0\rangle _{A1}\langle 0|_{A1} + {\sigma _y}_A \otimes |1\rangle _{A1}\langle 1|_{A1}\) and \(U_{XA1}=I_{A1} \otimes |0\rangle _{A}\langle 0|_{A} + {\sigma _x}_{A1} \otimes |1\rangle _{A}\langle 1|_{A}\). On the other hand, Bob firstly applies the controlled unitary operator \(U_{YB1}=I_B \otimes |0\rangle _{B1}\langle 0|_{B1} + {\sigma _y}_B \otimes |1\rangle _{B1}\langle 1|_{B1}\) on qubits B and B1 and then conducts the transformation \(U_S(\gamma )=i\sin {\frac{\gamma }{2}}\sigma _y+i\cos {\frac{\gamma }{2}}\sigma _z\) on qubit B1. Subsequently, he measures qubit B1 with orthogonal bases \({|f_{B1}\rangle }\), \(f=0,1\) and tells Alice the measurement result f via a classical channel. With operations \({\sigma _x}_A^f \otimes {\sigma _x}_B^f\), players can turn \(|\psi _{N1}\rangle \) into state

    $$\begin{aligned} |\psi _{Cin}\rangle =|\psi _{in}\rangle \otimes |0_{A1}f_{B1}\rangle = \left( \cos \frac{\gamma }{2}|0_A0_B\rangle + i \sin \frac{\gamma }{2}|1_A1_B\rangle \right) \otimes |0_{A1}f_{B1}\rangle .\nonumber \\ \end{aligned}$$
    (8)
  2. 2.

    Alice and Bob apply strategy operators \(U_A\) and \(U_B\) to local qubits A and B, respectively, with \(U_A=U_P (\theta _A,\phi _A )\) and \(U_B=U_P (\theta _B,\phi _B )\). The final state of qubits A and B can be denoted by \(|\psi _{S}\rangle \) in Eq. (4).

  3. 3.

    Once more, with the ancillary EPR pair provided by the quantum network, Alice and Bob apply \(J^\dag (\gamma )=\exp \left( i\gamma {\sigma _y}_A \otimes {\sigma _y}_B \right) \) to the entangled qubits A and B through a nonlocal quantum gate. Here the process is similar to the first step, although the controlled \(\sigma _x\) gate on qubit A1 is now replaced by a Hadamard gate followed by measurement on A2 and a \(\sigma _z^g\) gate on B2 performed according to the measurement result g. After the process, the state of qubits A and B becomes

    $$\begin{aligned} |\psi _{fin}\rangle= & {} \cos \frac{\gamma }{2} ( a|0_A0_B\rangle +b|0_A1_B\rangle +c|1_A0_B\rangle +d|1_A1_B\rangle ) \nonumber \\&- i \sin \frac{\gamma }{2}( a|0_A0_B\rangle -b|0_A1_B\rangle -c|1_A0_B\rangle +d|1_A1_B\rangle ). \end{aligned}$$
    (9)
  4. 4.

    Alice and Bob measure their qubit A and B in the orthogonal bases \(|0_A\rangle \), \(|1_A\rangle \) and \(|0_B\rangle \), \(|1_B\rangle \), respectively. They send the results i and j to the referee of the game.

  5. 5.

    The referee calculates players’ payoffs from the measurement results according to the payoff matrix of the game.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, BY., Dai, HY. & Zhang, M. Playing distributed two-party quantum games on quantum networks. Quantum Inf Process 16, 290 (2017). https://doi.org/10.1007/s11128-017-1738-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1738-0

Keywords

Navigation