Skip to main content
Log in

Generation of three-qubit Greenberger–Horne–Zeilinger states of superconducting qubits by using dressed states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Combining the advantages of the dressed states and superconducting quantum interference device (SQUID) qubits, we propose an efficient scheme to generate Greenberger–Horne–Zeilinger (GHZ) states for three SQUID qubits. Firstly, we elaborate how to generate GHZ states of three SQUID qubits by choosing a set of dressed states suitably. Then, we compare the scheme by using dressed states with that via the adiabatic passage. Lastly, the influence of various decoherence factors, such as cavity decay, spontaneous emission and dephasing, is analyzed numerically. All of the results show that the GHZ state can be obtained fast and with high fidelity and that the present scheme is robust against the cavity decay and spontaneous emission. In addition, our scheme is more stable against the dephasing than the adiabatic scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jia, X.J., Yan, Z.H., Duan, Z.Y., Su, X.L., Wang, H., Xie, C.D., Peng, K.C.: Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths. Phys. Rev. Lett. 109(25), 253604 (2012)

    Article  ADS  Google Scholar 

  2. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85(11), 2392–2395 (2000)

    Article  ADS  Google Scholar 

  3. Wang, Z., Zhang, C., Huang, Y.F., Liu, B.H., Li, C.F., Guo, G.C.: Experimental verification of genuine multipartite entanglement without shared reference frames. Sci. Bullet. 61(9), 714–719 (2016)

    Article  Google Scholar 

  4. Cao, D.Y., Liu, B.H., Wang, Z., Huang, Y.F., Li, C.F., Guo, G.C.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bullet. 60(12), 1128–1132 (2015)

    Article  Google Scholar 

  5. Han, S., Rouse, R., Lukens, J.E.: Generation of a population inversion between quantum states of a macroscopic variable. Phys. Rev. Lett. 76(18), 3404 (1996)

    Article  ADS  Google Scholar 

  6. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bells theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87(23), 230404 (2001)

    Article  ADS  Google Scholar 

  8. Yang, C.P.: Preparation of n-qubit Greenberger–Horne–Zeilinger entangled states in cavity QED: an approach with tolerance to nonidentical qubit-cavity coupling constants. Phys. Rev. A 83(6), 062302 (2011)

    Article  ADS  Google Scholar 

  9. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89(3), 033856 (2014)

    Article  ADS  Google Scholar 

  10. Dr, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bell, J.S.: On the einstein podolski rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  12. Dowling, J.P.: Quantum optical metrology-the lowdown on high-NOON states. Physics 49(2), 125–143 (2008)

    Google Scholar 

  13. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188 (2001)

    Article  ADS  Google Scholar 

  14. Zheng, S.B.: Generation of Greenberger–Horne–Zeilinger states for multiple atoms trapped in separated cavities. Eur. Phys. J. D 54(3), 719–722 (2009)

    Article  ADS  Google Scholar 

  15. Feng, W., Wang, P., Ding, X., Xu, L., Li, X.Q.: Generating and stabilizing the Greenberger–Horne–Zeilinger state in circuit QED: joint measurement, zeno effect, and feedback. Phys. Rev. A 83(4), 042313 (2011)

    Article  ADS  Google Scholar 

  16. Deng, Z.J., Gao, K.L., Feng, M.: Generation of N-qubit W states with rf SQUID qubits by adiabatic passage. Phys. Rev. A 74(6), 064303 (2006)

    Article  ADS  Google Scholar 

  17. Duan, L.M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single photon detections. Phys. Rev. Lett. 90(25), 253601 (2003)

    Article  ADS  Google Scholar 

  18. Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87(2), 022320 (2013)

    Article  ADS  Google Scholar 

  19. Yang, C.P.: Quantum information transfer with superconducting flux qubits coupled to a resonator. Phys. Rev. A 82(5), 054303 (2010)

    Article  ADS  Google Scholar 

  20. Yang, C.P.: A proposal for realizing a 3-Qubit controlled-phase gate with superconducting qubit systems coupled to a cavity. Prog. Theor. Phys. 128(3), 587–599 (2012)

    Article  ADS  MATH  Google Scholar 

  21. Yang, C.P., Han, S.: Rotation gate for a three-level superconducting quantum interference device qubit with resonant interaction. Phys. Rev. A 74(4), 044302 (2006)

    Article  ADS  Google Scholar 

  22. Yang, C.P., Su, Q.P., Han, S.: Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A 86(2), 022329 (2012)

    Article  ADS  Google Scholar 

  23. Devoret, M., Girvin, S., Schoelkopf, R.: Circuit-QED: how strong can the coupling between a Josephson junction atom and a transmission line resonator be? Ann. Phys. (Leipzig) 16(11), 767–779 (2007)

    Article  ADS  MATH  Google Scholar 

  24. Schmidt, S., Koch, J.: Towards quantum simulation with superconducting circuits. Ann. Phys. 525(6), 395–412 (2013)

    Article  Google Scholar 

  25. van der Wal, C.H., ter Haar, A.C.J., Wilhelm, F.K., Schouten, R.N., Harmans, C.J.P.M., Orlando, T.P., Lloyd, S., Mooij, J.E.: Quantum superposition of macroscopic persistent-current states. Science 290(5492), 773–777 (2000)

    Article  ADS  Google Scholar 

  26. Blais, A., Zagoskin, A.M.: Operation of universal gates in a solid-state quantum computer based on clean Josephson junctions between d-wave superconductors. Phys. Rev. A 61(4), 042308 (2000)

    Article  ADS  Google Scholar 

  27. Steinbach, A., Joyez, P., Cottet, A., Esteve, D., Devoret, M.H., Huber, M.E., Martinis, J.M.: Direct measurement of the Josephson supercurrent in an ultrasmall Josephson junction. Phys. Rev. Lett. 87(13), 137003 (2001)

    Article  ADS  Google Scholar 

  28. Makhlin, Y., Schoen, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73(2), 357–400 (2001)

    Article  ADS  Google Scholar 

  29. Xiang-bin, W., Keiji, M.: Nonadiabatic detection of the geometric phase of the macroscopic quantum state with a symmetric SQUID. Phys. Rev. B 65(17), 172508 (2002)

    Article  ADS  Google Scholar 

  30. Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67(4), 042311 (2003)

    Article  ADS  Google Scholar 

  31. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two and three-level atoms. Phys. Rev. Lett. 105(12), 123003 (2010)

    Article  ADS  Google Scholar 

  32. Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18(2), 023001 (2016)

    Article  ADS  Google Scholar 

  33. Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics. Phys. Rev. A 93(5), 052324 (2016)

    Article  ADS  Google Scholar 

  34. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in Harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104(6), 063002 (2010)

    Article  ADS  Google Scholar 

  35. Muga, J.G., Chen, X., Ibáñez, S., Lizuain, I., Ruschhaupt, A.: Transitionless quantum drivings for the harmonic oscillator. J. Phys. B 43(8), 085509 (2010)

    Article  ADS  Google Scholar 

  36. Muga, J.G., Chen, X., Ruschhaupt, A., Guéry-Odelin, D.: Frictionless dynamics of Bose–Einstein condensates under fast trap variations. J. Phys. B 42(24), 241001 (2009)

    Article  ADS  Google Scholar 

  37. Chen, X., Muga, J.G.: Transient energy excitation in shortcuts to adiabaticity for the time-dependent harmonic oscillator. Phys. Rev. A 82(5), 053403 (2010)

    Article  ADS  Google Scholar 

  38. Muga, J.G., Echanobe, J., del Campo, A., Lizuain, I.: Generalized relation between pulsed and continuous measurements in the quantum Zeno effect. J. Phys. B 41(17), 175501 (2008)

    Article  ADS  Google Scholar 

  39. Martínez-Garaot, S., Torrontegui, E., Chen, X., Muga, J.G.: Shortcuts to adiabaticity in three-level systems using Lie transforms. Phys. Rev. A 89(5), 053408 (2014)

    Article  ADS  Google Scholar 

  40. del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111(10), 100502 (2013)

    Article  Google Scholar 

  41. del Campo, A.: Frictionless quantum quenches in ultracold gases: a quantum-dynamical microscope. Phys. Rev. A 84(3), 031606 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  42. del Campo, A.: Fast frictionless dynamics as a toolbox for low-dimensional Bose–Einstein condensates. Eur. Phys. Lett. 96(6), 60005 (2011)

    Article  Google Scholar 

  43. Torrontegui, E., Chen, X., Modugno, M., Schmidt, S., Ruschhaupt, A., Muga, J.G.: Fast transport of Bose–Einstein condensates. New J. Phys. 14(1), 013031 (2012)

    Article  Google Scholar 

  44. Ibáñez, S., Chen, X., Torrontegui, E., Muga, J.G., Ruschhaupt, A.: Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. Phys. Rev. Lett. 109(10), 100403 (2012)

    Article  ADS  Google Scholar 

  45. Ibáñez, S., Chen, X., Muga, J.G.: Improving shortcuts to adiabaticity by iterative interaction pictures. Phys. Rev. A 87(4), 043402 (2013)

    Article  ADS  Google Scholar 

  46. Ibáñez, S., Martínez-Garaot, S., Chen, X., Torrontegui, E., Muga, J.G.: Shortcuts to adiabaticity for non-Hermitian systems. Phys. Rev. A 84(2), 023415 (2011)

    Article  ADS  Google Scholar 

  47. del Campo, A., Rams, M.M., Zurek, W.H.: assisted finite-rate adiabatic passage across a quantum critical point: exact solution for the quantum ising model. Phys. Rev. Lett. 109(11), 115703 (2012)

    Article  ADS  Google Scholar 

  48. Ibáñez, S., Li, Y.C., Chen, X., Muga, J.G.: Pulse design without the rotating-wave approximation. Phys. Rev. A 92(6), 062136 (2015)

    Article  ADS  Google Scholar 

  49. Wu, Q.C., Chen, Y.H., Huang, B.H., Xia, Y., Song, J.: Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems Phys. Rev. A 94(5), 053421 (2016)

    Article  Google Scholar 

  50. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Phys. Rev. A 91(1), 012325 (2015)

    Article  ADS  Google Scholar 

  51. Liang, Y., Wu, Q.C., Su, S.L., Xin, J., Zhang, S.: Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A 91(3), 032304 (2015)

    Article  ADS  Google Scholar 

  52. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states’ preparation and transition. Laser Phys. Lett. 11(11), 115201 (2014)

    Article  ADS  Google Scholar 

  53. Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 012326 (2014)

    Article  ADS  Google Scholar 

  54. Lu, M., Xia, Y., Shen, L.T., Song, J.: An effective shortcut to adiabatic passage for fast quantum state transfer in a cavity quantum electronic dynamics system. Laser Phys. 24(10), 105201 (2014)

    Article  ADS  Google Scholar 

  55. Chen, Z., Chen, Y.H., Xia, Y., Song, J., Huang, B.H.: Fast generation of three-atom singlet state by transitionless quantum driving. Sci. Rep. 6, 22202 (2016)

    Article  ADS  Google Scholar 

  56. Shan, W.J., Xia, Y., Chen, Y.H., Song, J.: Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Inf. Process. 15, 2359–2376 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Chen, Y.H., Xia, Y., Song, J., Chen, Q.Q.: Shortcuts to adiabatic passage for fast generation of Greenberger–Horne–Zeilinger states by transitionless quantum driving. Sci. Rep. 5, 15616 (2016)

    Article  ADS  Google Scholar 

  58. Chen, Y.H., Huang, B.H., Song, J., Xia, Y.: Transitionless-based shortcuts for the fast and robust generation of W states. Opt. Commun. 380, 140–147 (2016)

    Article  ADS  Google Scholar 

  59. Martínez-Garaot, S., Torrontegui, E., Chen, X., Muga, J.G.: Shortcuts to adiabaticity in three-level systems using Lie transforms. Phys. Rev. A 89(5), 053408 (2014)

    Article  ADS  Google Scholar 

  60. Opatrný, T., Mømer, K.: Partial suppression of nonadiabatic transitions. New J. Phys. 16(1), 015025 (2014)

    Article  ADS  Google Scholar 

  61. Saberi, H., Opatrný, T., Mømer, K., del Campo, A.: Adiabatic tracking of quantum many-body dynamics. Phys. Rev. A 90(6), 060301(R) (2014)

    Article  ADS  Google Scholar 

  62. Torrontegui, E., Martínez-Garaot, S., Muga, J.G.: Hamiltonian engineering via invariants and dynamical algebra. Phys. Rev. A 89(4), 043408 (2014)

    Article  ADS  Google Scholar 

  63. Torosov, B.T., Valle, G.D., Longhi, S.: Non-Hermitian shortcut to adiabaticity. Phys. Rev. A 87(5), 052502 (2013)

    Article  ADS  Google Scholar 

  64. Torosov, B.T., Valle, G.D., Longhi, S.: Non-Hermitian shortcut to stimulated Raman adiabatic passage. Phys. Rev. A 89(6), 063412 (2014)

    Article  ADS  Google Scholar 

  65. Chen, Y.H., Wu, Q.C., Huang, B.H., Xia, Y., Song, J.: Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Phys. Rev. A 93(5), 052109 (2016)

    Article  ADS  Google Scholar 

  66. Baksic, A., Ribeiro, H., Clerk, A.A.: Speeding up adiabatic quantum state transfer by using Dressed states. Phys. Rev. Lett. 116(23), 230503 (2016)

    Article  ADS  Google Scholar 

  67. Yang, C.P., Chu, S.I., Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92(11), 117902 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11575045, 11374054 and 11674060, and the Major State Basic Research Development Program of China under Grant No. 2012CB921601.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Cheng Shi or Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, YH., Shi, ZC. et al. Generation of three-qubit Greenberger–Horne–Zeilinger states of superconducting qubits by using dressed states. Quantum Inf Process 16, 309 (2017). https://doi.org/10.1007/s11128-017-1758-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1758-9

Keywords

Navigation