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In this work, it is presented an optical scheme for quantum key distribution employing two synchronized 

optoelectronic oscillators (OEO) working in the chaotic regime. The produced key depends on the chaotic dynamic 

and the synchronization between Alice’s and Bob’s OEOs uses quantum states. An attack on the synchronization 

signals will disturb the synchronization of the chaotic systems increasing the error rate in the final key.  
 

 

1. Introduction 

 
 Nowadays, with the increasing number of network services, data security in optical networks is a 

crucial issue. Two solutions for data security in optical networks based on physical systems are chaotic 

cryptography and quantum key distribution (QKD). Chaotic cryptography requires (at least) two synchronized 

chaotic systems and it takes advantages of pseudo-randomness and high dependence on the parameters values 

to protect the information [1-6]. There are different optical systems that can be used for chaotic 

communication. Here it is considered only optoelectronic oscillators producing chaotic light polarization 

states [7]. Quantum key distribution, by its turn, uses random choices of (non-orthogonal) quantum states 

and bases of measurement, as well the non-cloning theorem, in order to guarantee the security of the 

information [8-11]. Some attempts to put chaotic cryptography and QKD to work together have been 

proposed [12,13], however, in those cases the quantum and the chaotic systems are clearly distinct. In the 

present work, we propose a setup for quantum key distribution using synchronized optoelectronic 

oscillators operating in chaotic regime. In this case, the quantum and the chaotic systems are integrated in 

only one system: the produced key depends on the chaotic dynamic and the synchronization between 

Alice’s and Bob’s OEOs uses quantum states. As it will be shown latter, this is a very different kind of 

quantum key distribution since the quantum states do not carry the key’s bits, they are responsible for 

keeping the synchronization of the chaotic systems. 

 This work is outlined as follows: In Section 2 the optoelectronic oscillator is reviewed. In Section 3 the optical 

setup for quantum-chaotic cryptography is presented. Section 5 brings a security analysis. At last, the conclusions are 

drawn in Section 5.  

 

2.  Optoelectronic Oscillators Producing Chaotic Light Polarization States 
 

 The optoelectronic oscillator here considered is similar to the one that produces chaotic light 

polarization states described in [7]. Nevertheless, in this work we consider the pulsed regime [13]. The 

setup is shown in Fig. 1.   
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Fig. 1 – Optoelectronic oscillator that produces chaotic light polarization states: BS – beam splitter, K – 

electrical amplifier, D1,2 – photodetectors, PBS – polarizing beam splitter, R - polarization rotator, MOD – 

electrooptical polarization modulator and E1-E6 are the electrical fields at the marked positions. 
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 The optoelectronic oscillator is an optical scheme where the light emitted by the laser source is 

modulated and detected. The photocurrent produced is amplified and used to feed the modulator. Moreover, 

the time required to the light be detected in D1 and the electrical signal produced to feed the modulator is 

equal to the time interval between consecutive light pulses generated by the laser. The BS is a balanced 

beam splitter, PBS is a polarizing beam splitter, D1 and D2 are optical detectors and K is an electrical 

amplifier. The light polarization states in Fig. 1 and the recurrence equation that describes the dynamic of 

the OEO are [13] 
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 In (1)-(6) the subscripts H and V mean, respectively, the horizontal and vertical modes. In (7)  is 

the time interval between two consecutives light pulses. The light produce by the laser is linearly polarized 

in /4 (|,HV). The optical modulator adds a phase of Vin/(2V)+  in the horizontal component and                   

-Vin/(2V)-  in the vertical component. The voltage Vin is the modulating signal while V is the voltage 

required to add a /2 phase and  is the offset value. The polarization rotator applies a /4 rotation in the 

input state. After the polarization rotator, the optical signal is divided by a balanced beam splitter. One half 

is the output state, E5, while the second half has its horizontal and vertical components separated by a PBS. 

The horizontal component is detected in D1 and the photocurrent produced is amplified and used as 

modulating signal. The vertical component is detected in D2 and its value is used for synchronization 

purposes. The chaotic behavior is achieved when the values of optical input power (2),   and V and K 

(that models the electrical amplifier gain, optical losses and the detector‘s (D1) efficiency) are properly 

chosen. The initial value of Vin is a random variable that depends on the internal noise of the electronic 

devices, hence, different OEOs will start with different initial values for Vin. Due to the recurrence equation 

(7), Vin shows a chaotic behavior that is translated to the polarization state of E5. The Stokes parameter S1 of 

E5 in Fig. 1 is given by 

 

 
2

1 cos 2 ,inS V V                                          

 

where  is a constant that takes into account details of the polarimeter used to measure S1. 

 

 

3. Quantum-Chaotic Cryptography using Synchronized OEOs 
 

 The optical setup for quantum-chaotic cryptography is shown in Fig. 2. 
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Fig. 2. Optical setup for quantum-chaotic cryptography. SPDA,B – single-photon detector, A – optical 

attenuator, SA,B – electrical switch and A,B - electrical adder. 

 

The system in Fig. 2 works as follows:   

 

1. In Alice (Bob), the output field   
  (  

 ) is divided by a beam splitter. One part is strongly 

attenuated by the optical attenuator A and sent to Bob (Alice) through the optical channel. The 

second part has its polarization measured by a polarimeter. This information is used to control 

a polarization controller in such way that, if the light coming from Bob (Alice) has the same 

polarization state, it is NOT guided to the single-photon detector SPDA(B). Hence, Alice (Bob) 

chooses the basis of measurement (polarization controller and PBS) according to her (his) 

output light polarization state. Detection in SPDA(B) closes the electrical switch SA(B). In this 

case the recurrence equation (7) becomes only 

 

 
2,
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in A B A BV t K    

 

2. Alice’s (Bob’s) bit sequence (key) is formed by the discretization of the Stokes parameter S1 

of the output optical field   
    

  . In order to obtain a binary sequence from the continuous 

values of   
   

, a threshold value Sth is defined and, when   
   

 < Sth the bit ‘0’ is obtained 

otherwise the bit ‘1’ is obtained. 

 

 In the scenario of perfect synchronization, both chaotic systems will produce the same light 

polarizations states at the outputs,   
    

 , and the formed key will be the same, since   
    

 , implying 

in a zero bit error rate. On the other hand, a non-perfect synchronization will result in a non-zero error rate: 

the worse the synchronization the higher is the error rate. In the lack of synchronization, the error rate is 

(9) 
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around 50%. Hence, in this scheme, the synchronization signals (weak coherent states) are crucial for the 

security analysis.  

 As discussed before, the synchronization consists in change the recurrence equation from (7) to (9), 

what happens when a light pulse coming from Bob (Alice) is detected by Alice (Bob). The probabilities of 

detection in SPDA (qA) and SPDB (qB) are given by   
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In (10)-(11), pA (pB) is the Alices’ (Bob’) single-photon detector’s probability to produce a detectable 

electrical signal when a photon arrives, |A|
2
 (|B|

2
) is the (lower than 1) mean photon number of the pulse 

leaving Alice (Bob) and tc is the channel’s transmission coefficient. The lower the values of qA and/or qB 

the worse is the synchronization. Thus, like traditional QKD, there is a maximal distance for which the 

error rate is still acceptable.  

 A simulation with 40,000 points and with the following parameters values was performed:   = 0.01, 

2 
= 100 (for Alice and Bob),  = /4, V = 1V, KA = KB = 0.0133, pAtc|B|

2 
= pBtc|A|

2 
= 0.03,    

       
    and    

           (the two chaotic systems are equal but they start with different initial conditions 

for Vin). Furthermore, the OEOs are working without synchronism during the first 100 time slots. One can 

see part of it in Fig. 3 the almost perfect synchronism between the Stokes parameters   
  (+) and   

  (o) (n 

is the slot time number). The error rate was 5.3% in a bit string with 40,000 bits. 

 
Fig. 3 -   

  and   
  versus n (almost perfect synchronism). 

 

 Another simulation using KA = 0.0133, KB = 0.0132, pAtc|B|
2 

= pBtc|A|
2 

= 0.83 (the other parameters 

have the same values used before) can be seen in Fig. 4. In this figure one can see the effect of the 
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mismatch parameter noise [14] (KA  KB) on the synchronism. The error rate was 23.8% in a bit string with 

40,000 bits. 

 
Fig. 4 -   

  and   
  versus n (non-perfect synchronism). 

 

 

4. Security Analysis 

 
 In order to get the bits of the key, a spy must have an OEO synchronized with Alice’s and Bob’s 

OEOs. Hence, the eavesdropper will have to attack the quantum signals used in the synchronization and to 

guess correctly the OEOs parameters values used by Alice and Bob, otherwise the mismatch noise will not 

permit the synchronization. Thus, as expected, the security of the quantum-chaotic cryptography is 

guaranteed by quantum and chaotic rules.  

 During an attack, the eavesdropper cannot decrease the mean photon number of the light pulses that 

arrives at Alice and Bob (for example, increasing the loss of the channel by inserting a beam splitter) once 

this would make worse the synchronization, increasing the bit error rate. On the other hand, the 

eavesdropper could make an attack that would increase detection in Alice’s and Bob’s single-photon 

detectors. For example, strong light pulses could be sent to Alice and Bob. However, in this case the 

dynamic of the non-linear system could change from chaotic to quasi-periodic, for example, indicating the 

attack. This can be seen in Fig. 5, where the discrete Fourier transforms of   
  for pAtc|B|

2 
=0.73 and 

pAtc|B|
2 

= 1000 (situation where SPDA always has detection) are shown. One can clearly see the presence 

of narrow peaks, showing a quasi-periodic behavior, when this kind of attack happened. In order to avoid 

this kind of Trojan horse in which strong pulses are sent, an optical detector can be plugged to the non-used 

PBS2 output (at Alice and Bob) in order to check if strong light pulses are being sent by an eavesdropper. 

 At last, the eavesdropper can just measure the synchronization signals and to send weak coherent 

states to Alice and Bob in polarization states that are in agreement with the measurement results. Without 

knowing in which basis to measure (the light polarization of the pulses sent by Alice and Bob follows a 

chaotic dynamic, hence, it is a continuous variables), the eavesdropper will introduce a noise that here is 

modeled by a uniform random variable. Numerical simulations showed an error around 50% in this case.  
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Fig. 5 -  Discrete Fourier transform of of   
  for pAtc|B|

2 
=0.73 and pAtc|B|

2 
= 1000. 

 

 

5. Conclusions 
 

 

  The present work showed an optical setup for quantum-chaotic cryptography. Its main 

characteristics are:  

 

1) The set of quantum states (light polarization state) used is continuous since Vin is a continuous 

variable.  

 

2) The key information is not carried by the quantum states. These are responsible for synchronization 

of Alice’s and Bob’s OEOs. They bits of the key depend on the chaotic dynamic of the Stokes 

parameter S1. They are obtained by measuring high mean photon number coherent states.  

 

3) There is no bases reconciliation stage. 

 

4) Since the synchronization signal is not always present (because of the low mean photon number 

used for them), the error rate is very sensible to the mismatch noise, that is, when the parameters 

values are not exactly the same. In the lack of synchronism, the mismatch noise makes impossible 

two OEOs operating in the chaotic regime to follow the same orbits in the strange attractor. In other 

words, the larger the mismatch parameter noise, the larger must be the values of pA,Btc|A,B|
2 

in order 

to still obtain an acceptable error rate. 

 

5) The security is guaranteed by quantum and chaotic rules. The eavesdropper can attack the 

synchronization signal however, since weak coherent states are used, the polarization is a continuous 

variable and the OEOs’ parameters values are not known, it cannot use this information to try to 

reconstruct the chaotic behavior of Alice’s and Bob’s OEOs.  
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