Skip to main content
Log in

A novel quantum scheme for secure two-party distance computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Secure multiparty computational geometry is an essential field of secure multiparty computation, which computes a computation geometric problem without revealing any private information of each party. Secure two-party distance computation is a primitive of secure multiparty computational geometry, which computes the distance between two points without revealing each point’s location information (i.e., coordinate). Secure two-party distance computation has potential applications with high secure requirements in military, business, engineering and so on. In this paper, we present a quantum solution to secure two-party distance computation by subtly using quantum private query. Compared to the classical related protocols, our quantum protocol can ensure higher security and better privacy protection because of the physical principle of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yao, A.: Protocols for secure computations. In: Proceedings of 23rd Annual Symposium on Foundations of Computer Science (FOCS ’82), Chicago, USA, pp. 160–164. IEEE Computer Society Press, New York (1982)

  2. Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: a review and open problems. In: Proceedings of the 2001 Workshop on New Security Paradigms, pp. 13–22. ACM, New York (2001)

  3. Atallah, M.J., Du, W.: Secure multi-party computational geometry. In: Proceedings of 7th International Workshop on Algorithms and Data Structures, pp. 165–179. Springer, Berlin Heidelberg (2001)

  4. Li, S.D., Dai, Y.Q.: Secure two-party computational geometry. J. Comput. Sci. Technol. 20(2), 258–263 (2005)

    Article  MathSciNet  Google Scholar 

  5. Frikken, K.B., Atallah, M.J.: Privacy preserving route planning. In: Proceedings of the 2004 ACM workshop on Privacy in the electronic society, pp. 8–15. ACM, New York (2004)

  6. Yang, B., Sun, A., Zhang, W.: Secure two-party protocols on planar circles. J. Inf. Comput. Sci. 8(1), 29–40 (2011)

    Google Scholar 

  7. Luo, Y., Huang, L., Jing, W., et al.: Privacy protection in the relative position determination for two spatial geometric objects. Comput. Res. Dev. 43(3), 410–416 (2006)

    Article  Google Scholar 

  8. Liu, W., Luo, S., Yang, Y., et al.: A study of secure two-party circle computation problem. J. Beijing Univ. Posts Telecommun. 32, 32–35 (2009)

    Google Scholar 

  9. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134. IEEE, New York (1994)

  10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth annual ACM Symposium on Theory of Computing, Coimbra, Portugal, pp. 212–219. ACM, New York (1996)

  11. Jia, H.Y., Wen, Q.Y., Song, T.T., et al.: Quantum protocol for millionaire problem[J]. Opt. Commun. 284(1), 545–549 (2011)

    Article  ADS  Google Scholar 

  12. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs[J]. Quantum Inf. Process. 11(2), 373–384 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huang, W., Wen, Q.Y., Liu, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels[J]. Sci. China Phys. Mech. Astron. 56(9), 1670–1678 (2013)

    Article  ADS  Google Scholar 

  14. Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum anonymous ranking[J]. Phys. Rev. A 89(3), 87–90 (2014)

    Google Scholar 

  15. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying[J]. Phys. Rev. A 75(1), 10064–10070 (2007)

    Article  Google Scholar 

  16. Wang, Q., Yu, C., Gao, F., et al.: Self-tallying quantum anonymous voting[J]. Phys. Rev. A 94, 022333 (2016)

    Article  ADS  Google Scholar 

  17. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84(2), 022313 (2011)

    Article  ADS  Google Scholar 

  19. Shi, R., Mu, Y., Zhong, H., et al.: An efficient quantum scheme for Private Set Intersection. Quantum Inf. Process. 15(1), 363–371 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Shi, R., Mu, Y., Zhong, H., et al.: Quantum private set intersection cardinality and its application to anonymous authentication. Inf. Sci. 370, 147–158 (2016)

    Article  Google Scholar 

  21. Vaidya, J., Shafiq, B., Fan, W., Mehmood, D., Lorenzi, D.: A random decision tree framework for privacy-preserving data mining. IEEE Trans. Depend. Sec. Comput. 11(5), 399–411 (2014)

    Article  Google Scholar 

  22. Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol[J]. Phys. Rev. A 83(2), 022301 (2011)

    Article  ADS  Google Scholar 

  23. Yang, Y.G., Sun, S.J., Xu, P., et al.: Flexible protocol for quantum private query based on B92 protocol[J]. Quantum Inf. Process. 13(3), 805–813 (2014)

    Article  MathSciNet  Google Scholar 

  24. Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query[J]. IEEE J. Select. Top. Quantum Electron. 21(3), 98–108 (2014)

    Google Scholar 

  25. Liu, B., Fei, G., Wei, H., et al.: QKD-based quantum private query without a failure probability[J]. Sci. China 58(10), 100301 (2015)

    Google Scholar 

  26. Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack[J]. Phys. Rev. A 93(4), 042318 (2016)

    Article  ADS  Google Scholar 

  27. Shi, R., Mu, Y., Zhong, H., et al.: Quantum oblivious set-member decision protocol. Phys. Rev. A 92(2), 022309 (2015)

    Article  ADS  Google Scholar 

  28. Shi, R., Mu, Y., Zhong, H., et al.: Privacy-preserving point-inclusion protocol for an arbitrary area based on phase-encoded quantum private query. Quantum Inf. Process. 16(1), 8 (2017)

    Article  ADS  MATH  Google Scholar 

  29. Shi, R., Mu, Y., Zhong, H., et al.: Comment on “Secure quantum private information retrieval using phase-encoded queries”. Phys. Rev. A 94(6), 066301 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 61772001 and 11301002) and Talents Youth Fund of Anhui Province Universities (2013SQRL006ZD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-hua Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Zw., Shi, Rh., Zhong, H. et al. A novel quantum scheme for secure two-party distance computation. Quantum Inf Process 16, 316 (2017). https://doi.org/10.1007/s11128-017-1766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1766-9

Keywords

Navigation