Skip to main content
Log in

Estimations of the errors between the evolving states generated by two Hamiltonians with the same initial state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Time evolution of a quantum system is described by Schrödinger equation with initial pure state, or von Neumann equation with initial mixed state. In this paper, we estimate the error between the evolving states generated by two Hamiltonians with the same initial pure state. Secondly, according to the method of operator–vector correspondence, we give a relation of the Schrödinger equation and von Neumann equation and then estimate the error between the evolving states generated by two Hamiltonians with the same initial mixed state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yajima, K.: Existence of solutions for Schrodinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Peskin, U., Moiseyev, N.: The solution of the time-dependent Schrodinger equation by the \((t, t^{^{\prime }})\) method: theory, computational algorithm and applications. J. Chem. Phys. 99, 4590–4596 (1993)

    Article  ADS  Google Scholar 

  3. Bennant, M., Koslofft, R., Tal-Ezert, H.: Solution of the time-dependent Liouville-von Neumann equation: dissipative evolution. J. Phys. A Math. Gen. 25, 1283–1307 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Schiff, L.I.: Quantum Mechanics. McGraw-Hill Book Co., Inc, New York (1949)

    MATH  Google Scholar 

  5. Kato, T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5, 435–439 (1950)

    Article  ADS  Google Scholar 

  6. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (2000). arXiv:quant-ph/0001106v1

  7. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–476 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Zhang, D.J., Tong, D.M., Lu, Y., Long, G.L.: An alternative adiabatic quantum algorithm for the Hamiltonian cycle problem. Commun. Theor. Phys. 63, 554–558 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. van Dam, W., Moscay, M., Vaziraniz, U.: How powerful is Adiabatic quantum computation?. In: Proceedings 2001 IEEE International Conference on Cluster Computing, pp. 279–287 (2002)

  10. Ambainis, A., Regev, O.: An elementary proof of the quantum adiabatic theorem (2004). arXiv:quant-ph/0411152v2

  11. Tong, D.M.: Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett. 104, 120401 (2010)

    Article  ADS  Google Scholar 

  12. Wu, J.D., Zhao, M.S., Chen, J.L., Zhang, Y.D.: Adiabatic approximation condition (2007). arXiv:quant-ph/0706.0264

  13. Cao, H.X., Guo, Z.H., Chen, Z.L., Wang, W.H.: Quantitative sufficient conditions for adiabatic approximation. Sci. China Phys. Mech. Astron. 56, 1401–1407 (2013)

    Article  ADS  Google Scholar 

  14. Wang, W.H., Guo, Z.H., Cao, H.X.: An upper bound for the adiabatic approximation error. Sci. China Phys. Mech. Astron. 57, 218–224 (2014)

    Article  Google Scholar 

  15. Yu, B.M., Cao, H.X., Guo, Z.H., Wang, W.H.: Computable upper bounds for the adiabatic approximation errors. Sci. China Phys. Mech. Astron. 57, 2031–2038 (2014)

    Article  ADS  Google Scholar 

  16. Wang, W.H., Cao, H.X., Lu, L., Yu, B.M.: An upper bound for the generalized adiabatic approximation error with a superposition initial state. Sci. China Phys. Mech. Astron. 58, 030001 (2015)

    Google Scholar 

  17. Wang, Z.Y., Plenio, M.B.: Necessary and sufficient condition for quantum adiabatic evolution by unitary control fields. Phys. Rev. A 93, 052107 (2016)

    Article  ADS  Google Scholar 

  18. Zhang, Q.: Quantum adiabatic evolution with energy degeneracy levels. Phys. Rev. A 93, 012116 (2016)

    Article  ADS  Google Scholar 

  19. Sarandy, M.S., Lidar, D.A.: Adiabatic approximation in open quantum systems. Phys. Rev. A 71, 012331 (2005)

    Article  ADS  Google Scholar 

  20. Arenz, C., Russell, B., Burgarth, D., Rabitz, H.: The roles of drift and control field constraints upon quantum control speed limits (2017). arXiv:1704.06289

  21. Watrous, J.: Theory of quantum information. University of Waterloo, Ontario (2011)

    Google Scholar 

  22. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (2006)

    MATH  Google Scholar 

  23. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, London (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11771009, 11601300, 11571213) and the Fundamental Research Funds for the Central Universities (GK201703093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-xin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Wh., Cao, Hx. & Chen, Zl. Estimations of the errors between the evolving states generated by two Hamiltonians with the same initial state. Quantum Inf Process 17, 21 (2018). https://doi.org/10.1007/s11128-017-1772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1772-y

Keywords

Navigation