Skip to main content
Log in

Protection of quantum Fisher information for multiple phases in open quantum systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the protection of quantum Fisher information (QFI) of two phases encoded in an open V-type three-level atom embedded in a zero-temperature bosonic reservoir and driven by a classical field. By transforming the problem into the model of an open driving-free V-type atom, we can then solve the dynamics analytically and study the evolution of QFI numerically. It is found that the QFI of both of the two phases can be protected effectively when the strength of the driving field is adequate. The protective effect enhances with the decrease in detuning between the frequency of the classical driving field and the frequency of the atomic transitions. Narrow width of the environmental spectrum is also beneficial for the protection of QFI of the phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dowling, J.P.: Correlated input-port, matter-wave interferometer: quantum-moise limits to the atom-laser gyroscope. Phys. Rev. A 57, 4736–4746 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Quanyum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004)

    Article  ADS  Google Scholar 

  3. Wineland, D.J., Bollinger, J.J., Itano, W.M., Heinzen, D.J.: Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994)

    Article  ADS  Google Scholar 

  4. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–4652 (1996)

    Article  ADS  Google Scholar 

  5. Giovannetti, V., Lloyd, S., Maccone, L.: Nat. Photonics. Advances in quantum metrology 5, 222–229 (2011)

    Google Scholar 

  6. Maccone, L., Giovannetti, V.: Quantum metrology: beauty and the noisy beast. Nat. Phys. 7, 376–377 (2011)

    Article  Google Scholar 

  7. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Mitchell, M.W., Lundeen, J.S., Steinberg, A.M.: Super-resolvung phase measurements with a multi-photon entangled state. Nature 429, 161–164 (2004)

    Article  ADS  Google Scholar 

  9. Eisenberg, H.S., Hodelin, J.F., Khoury, G., Bouwmeester, D.: Multiphoton path entanglement by nonlocal bunching. Phys. Rev. Lett. 94(1–4), 090502 (2005)

    Article  ADS  Google Scholar 

  10. Nagata, T., Okamoto, R., O’Brien, J.L., Sasaki, K., Takeuchi, S.: Beating the standard quantum limit with four entangled photons. Science 316, 726–729 (2007)

    Article  ADS  Google Scholar 

  11. Goda, K., Miyakawa, O., Mikhailov, E.E., Saraf, S., Adhikari, R., McKenzie, K., Ward, R., Vass, S., Weinstein, A.J., Mavalvala, N.: A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 4, 472–476 (2008)

    Article  Google Scholar 

  12. LIGO Scientific Collaboration: A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011)

  13. Wineland, D.J., Bollinger, J.J., Itano, W.M., Moore, F.L., Heinzen, D.J.: Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992)

    Article  ADS  Google Scholar 

  14. Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997)

    Article  ADS  Google Scholar 

  15. Meyer, V., Rowe, M.A., Kielpinski, D., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001)

    Article  ADS  Google Scholar 

  16. Leibfried, D., Barrett, M.A., Schaetz, T., Britton, J., Chiaverini, J., Itano, W.M., Jost, J.D., Langer, C., Wineland, D.J.: Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004)

    Article  ADS  Google Scholar 

  17. Wasilewski, W., Jensen, K., Krauter, H., Renema, J.J., Balabas, M.V., Polzik, E.S.: Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104(1–4), 133601 (2010)

    Article  ADS  Google Scholar 

  18. Demkowicz-Dobrzański, R., Kołodyński, J., Gutǎ, M.: The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3(1–8), 1063 (2012)

    Article  Google Scholar 

  19. Knysh, S., Smelyanskiy, V.N., Durkin, G.A.: Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state. Phys. Rev. A 83(1–4), 021804 (2011)

    Article  ADS  Google Scholar 

  20. Escher, B.M., de Matos Filho, R.L., Davidovich, L.: General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011)

    Article  Google Scholar 

  21. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109(1–5), 233601 (2012)

    Article  ADS  Google Scholar 

  22. Demkowicz-Dobrzański, R., Jarzyna, M., Kołodyński, J.: Quantum limits in optical interferometry. Prog. Optics 60, 345–435 (2015)

    Article  Google Scholar 

  23. Yao, Y., Ge, L., Xiao, X., Wang, X., Sun, C.P.: Multiple phase estimation for arbitrary pure states under white noise. Phys. Rev. A 90(1–6), 062113 (2014)

    Article  ADS  Google Scholar 

  24. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-sate system. Phys. Rev. A 91(1–7), 052105 (2015)

    Article  ADS  Google Scholar 

  25. Garraway, B.M., Knight, P.L.: Cavity modified quantum beats. Phys. Rev. A 54, 3592–3602 (1996)

    Article  ADS  Google Scholar 

  26. Gu, W.-J., Li, G.-X.: non-Markovian behavior for spontaneous decay of a V-type three-level atom with quantum interference. Phys. Rev. A 85(1–4), 014101 (2012)

    Article  ADS  Google Scholar 

  27. Zhong, W., Sun, Z., Ma, J., Wang, X., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87(1–14), 022337 (2013)

    Article  ADS  Google Scholar 

  28. Kleppner, D.: u(3)-Boson model of nuclear collective motion. Phys. Rev. Lett. 47, 223–226 (1981)

    Article  ADS  Google Scholar 

  29. Goy, P., Raimond, J.M., Gross, M., Haroche, S.: Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983)

    Article  ADS  Google Scholar 

  30. Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681–685 (1946)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11275064), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20124306110003), and the Construct Program of the National Key Discipline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Sheng Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, YK., Wang, XL. & Zeng, HS. Protection of quantum Fisher information for multiple phases in open quantum systems. Quantum Inf Process 17, 5 (2018). https://doi.org/10.1007/s11128-017-1773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1773-x

Keywords

Navigation