Skip to main content
Log in

Perfect quantum multiple-unicast network coding protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding–decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding–decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeunget, R.W.: Network information flow. IEEE Trans. Inf. Theory 46, 1204–1216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

  3. Hayashi, M., Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: 24th International Symposium on Theoretical Aspects of Computer Science(STACS2007). Springer, Berlin (2007)

    Google Scholar 

  4. Iwama, K., Nishimura, H., Raymond, R., Yamashita, S.: e-print arXiv:quant-ph/0611039

  5. Hayashi, M.: Prior entanglement between senders enables perfect quantum network coding with modification. Phys. Rev. A 76, 040301(R) (2007)

    Article  ADS  MathSciNet  Google Scholar 

  6. Leung, D., Oppenheim, J., Winter, A.: Quantum network communication-the butterfly and beyond. IEEE Trans. Inf. Theory 56, 3478–3490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Satoh, T., Le Gall, F., Imai, H.: Quantum network coding for quatum repeaters. Phys. Rev. A 86, 032331 (2012)

    Article  ADS  Google Scholar 

  8. Li, J., Chen, X.B., Sun, X.M., Li, Z.P., Yang, Y.X.: Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci. China. Inf. Sci. https://doi.org/10.1007/s11432-016-5539-3

  9. Kobayashi, H., Le Gall, F., Nishimura, H., Röetteler, M.: General scheme for perfect quantum network coding with free classical communication. LNCS 5555, 622–633 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Kobayashi, H., Le Gall, F., Nishimura, H., Röetteler, M.: Perfect quantum network communication protocol based on classical network coding. In: Proceedings IEEE International Symposium on Information Theory (ISIT 2010), Austin, TX, USA (2010). https://doi.org/10.1109/ISIT.2010.5513644

  11. Shang, T., Li, J., Pei, Z., Liu, J.W.: Quantum network coding for general repeater networks. Quantum Inf Process 14, 3533 (2015). https://doi.org/10.1007/s11128-015-1066-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Shang, T., Li, J., Liu, J.W.: Secure quantum network coding for controlled repeater networks. Quantum Inf Process 15, 2937 (2016). https://doi.org/10.1007/s11128-016-1323-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  14. Briegel, H.-J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  15. Dür, W., Briegel, H.J.: Entanglement purification and quantum error correction. Rep. Prog. Phys. 70, 1381 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Van Meter, R., Ladd, T.D., Munro, W.J., Nemoto, K.: System design for a long-line quantum repeater. IEEE ACM Trans. Netw. 17, 1002 (2009)

    Article  Google Scholar 

  17. Jiang, L., Taylor, J.M., Nemoto, K., Munro, W.J., Van Meter, R., Lukin, M.D.: Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009)

    Article  ADS  Google Scholar 

  18. Munro, W.J., Harrison, K.A., Stephens, A.M., Devitt, S.J., Nemoto, K.: From quantum multiplexing to high-performance quantum networking. Nat. Photon. 4, 792 (2010)

    Article  ADS  Google Scholar 

  19. Fowler, A.G., Wang, D.S., Hill, C.D., Ladd, T.D., Van Meter, R., Hollenberg, L.C.L.: Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010)

    Article  ADS  Google Scholar 

  20. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  21. Duan, L.-M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209 (2010)

    Article  ADS  Google Scholar 

  22. Hucul, D., Inlek, I.V., Vittorini, G., Crocker, C., Debnath, S., Clark, S.M., Monroe, C.: Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37 (2014)

    Article  Google Scholar 

  23. Van Meter, R., Satoh, T., Ladd, T.D., Munro, W.J., Nemoto, K.: Path selection for quantum repeater networks. Netw. Sci. 3(1–4), 82–95 (2013)

    Article  Google Scholar 

  24. Jones, C., Kim, D., Rakher, M.T., Kwiat, P.G., Ladd, T.D.: Design and analysis of communication protocols for quantum repeater networks. New J. Phys. 18(8), 083015 (2016)

    Article  ADS  Google Scholar 

  25. Takahiko, S., Kaori, I., Shota, N., Rodney, V.M.: Analysis of quantum network coding for realistic repeater networks. Phys. Rev. A 93, 032302 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by NSFC (Grant nos. 61671082, 61672110, 61572081) and D.-D. Li is also supported by BUPT Excellent Ph.D. Students Foundation (Grant. no. CX2016401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Gao.

Appendix

Appendix

1.1 The proof of Theorem 1

Proof

Based on the procedure of \(\text {Con}^{A_{1}}_{A_{2}\rightarrow A_{2}^{'},\ldots ,A_{m}\rightarrow A_{m}^{'}}\), we give the result step by step.

Step 1, u applies \(\text {CNOT}(A_{1},A_{2})\otimes ...\otimes \text {CNOT}(A_{1},A_{m})\) to the state \(|{\varPhi }_\mathrm{init}\rangle \), then

$$\begin{aligned} |{\varPsi }_{1}\rangle \triangleq&\,\text {CNOT}(A_{1},A_{2})\otimes ...\otimes \text {CNOT}(A_{1},A_{m})|{\varPsi }_\mathrm{init}\rangle \nonumber \\ =&\, |00\rangle _{A_{1}A^{'}_{1}}\otimes |{\varPsi }^{+}\rangle _{A_{2}A^{'}_{2}}\otimes ...\otimes |{\varPsi }^{+}\rangle _{A_{m}A^{'}_{m}}\otimes |{\varPhi }\rangle \nonumber \\&+ |11\rangle _{A_{1}A^{'}_{1}}\otimes |{\varPhi }^{+}\rangle _{A_{2}A^{'}_{2}}\otimes ...\otimes |{\varPhi }^{+}\rangle _{A_{m}A^{'}_{m}}\otimes |{\varPhi }\rangle . \end{aligned}$$
(8)

Step 2, u measures \(A_{2},\ldots ,A_{m}\) in the basis \(\{|0\rangle ,|1\rangle \}\), let measurement result be \(\alpha =(a_{2},a_{3},\ldots ,a_{m})\), \( a_{i}\in \{0,1\}\), then

$$\begin{aligned} \begin{aligned} |{\varPsi }_{2}\rangle \triangleq&I^{\otimes ^{2}}\otimes (M \otimes I)^{\otimes ^{m-1}}\otimes I|{\varPsi }_{1}\rangle \\ =&|00\rangle _{A_{1}A^{'}_{1}}\otimes |a_{2}a_{3}...a_{m}\rangle _{A^{'}_{2}...A^{'}_{m}}\otimes |{\varPhi }\rangle +\, |11\rangle _{A_{1}A^{'}_{1}}\otimes |\overline{a_{2}} \overline{a_{3}}...\overline{a_{m}}\rangle _{A^{'}_{2}...A^{'}_{m}}\otimes |{\varPhi }\rangle . \end{aligned} \end{aligned}$$

where \(A_{2},\ldots ,A_{m}\) are disregarded since they are not entangled anymore.

Step 3, u applies \(I^{\otimes ^{2}}\otimes ^{m}_{i=2}X^{a_{i}}\otimes I\) to \(|{\varPsi }_{2}\rangle \), then

$$\begin{aligned} \begin{aligned} |{\varPsi }_{3}\rangle \triangleq&\,I^{\otimes ^{2}}\otimes ^{m}_{i=2}X^{a_{i}}\otimes I|{\varPsi }_{2}\rangle \\ =&\, |000...000\rangle _{A_{1} A^{'}_{1} A^{'}_{2}...A^{'}_{m}}\otimes |{\varPhi }\rangle +\,|111...111\rangle _{A_{1} A^{'}_{1} A^{'}_{2},\ldots ,A^{'}_{m}}\otimes |{\varPhi }\rangle . \end{aligned} \end{aligned}$$

\(\square \)

1.2 The proof of Theorem 2

Proof

Based on procedure of \(\text {Con}^{B^{'}_{1},\ldots ,B^{'}_{m}}_{C_{1}\rightarrow C^{'}_{1},\ldots ,C_{n}\rightarrow C^{'}_{n}}\) over the states of the internal nodes, we give the result step by step.

Step 1, u applies \(\text {CNOT}(B^{'}_{1}\oplus ...\oplus B^{'}_{m}, C_{1}) ,\ldots ,\text {CNOT}(B^{'}_{1}\oplus ...\oplus B^{'}_{m}, C_{n})\) to \(|{\varPsi }_\mathrm{init}\rangle \); then

$$\begin{aligned} \begin{aligned} |{\varPsi }_{1}\rangle \triangleq&\text {CNOT}(B^{'}_{1}\oplus ...\oplus B^{'}_{m}, C_{1})\otimes \cdots \otimes \text {CNOT}(B^{'}_{1}\oplus ...\oplus B^{'}_{m}, C_{n})|{\varPsi }_\mathrm{init}\rangle \\ =&\left( \sum _{b_{1}+\cdots +b_{m}=0\pmod {2}}|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}} \otimes |{\varPsi }^{+}\rangle _{C_{1}C^{'}_{1}}\otimes ...\otimes |{\varPsi }^{+}\rangle _{C_{n}C^{'}_{n}}\right) \otimes |{\varPhi }\rangle \\&\quad +\left( \sum _{b_{1}+\cdots +b_{m}=1\pmod {2}}|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}} \otimes |{\varPhi }^{+}\rangle _{C_{1}C^{'}_{1}}\otimes ...\otimes |{\varPhi }^{+}\rangle _{C_{n}C^{'}_{n}}\right) \otimes |{\varPhi }. \end{aligned} \end{aligned}$$
(9)

Step 2, u measures \(C_{1},\ldots ,C_{n}\) in the basis \({\{|0\rangle ,|1\rangle \}}\), if measurement result \(\beta =(\beta _{1},\ldots ,\beta _{n}),\beta _{i}\in \{0,1\}\), the state becomes

$$\begin{aligned} \begin{aligned} |{\varPsi }_{2}\rangle \triangleq&I^{\otimes ^{m}}\otimes (M \otimes I)^{\otimes ^{n}}\otimes I|{\varPsi }_{1}\rangle \\ =&\left( \sum _{b_{1}+\cdots +b_{m}=0\pmod {2}}|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}} \otimes |\beta _{1}\beta _{2}...\beta _{n}\rangle _{C^{'}_{1},..,C^{'}_{n}}\right) \otimes |{\varPhi }\rangle \\&\quad +\left( \sum _{b_{1}+\cdots +b_{m}=1\pmod {2}}|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}} \otimes |\overline{\beta _{1}},\overline{\beta _{2}},\ldots ,\overline{\beta _{n}}\rangle _{C^{'}_{1},..,C^{'}_{n}}\right) \otimes |{\varPhi }\rangle .\\ \end{aligned} \end{aligned}$$
(10)

Step 3, u applies \(I^{\otimes m}\otimes ^{n}_{i=2}X^{\beta _{i}}\otimes I\) to \(|{\varPsi }_{2}\rangle \), then

$$\begin{aligned} \begin{aligned} |{\varPsi }_{3}\rangle =&I^{\otimes m}\otimes ^{n}_{i=2}\sigma ^{\beta _{i}}_{X}\otimes I|{\varPsi }_{2}\rangle \\ =&\left( \sum _{b_{1}+\cdots +b_{m}=0\pmod {2}}|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}} \otimes |00...0\rangle _{C^{'}_{1},..,C^{'}_{n}}\right) \otimes |{\varPhi }\rangle \\&\quad +\,\left( \sum _{b_{1}+\cdots +b_{m}=1\pmod {2}}|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}} \otimes |11...1\rangle _{C^{'}_{1},..,C^{'}_{n}}\right) \otimes |{\varPhi }\rangle . \end{aligned} \end{aligned}$$
(11)

\(\square \)

1.3 The proof of Theorem 4

Proof

Based on procedure of \(\text {Delete} C^{'}_{i}\rightarrow {B^{'}_{1},\ldots ,B^{'}_{m}}\), we give the conclusion step by step.

Step 1, u applies Hadamard operator to \(C^{'}_{i}\) ; then,

$$\begin{aligned} \begin{aligned} |{\varPsi }_{1}\rangle \triangleq&I^{\otimes ^{m}}\otimes H |{\varPsi }_\mathrm{init}\rangle \\ =&|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}}|+\rangle _{C^{'}_{i}} +|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}}|-\rangle _{C^{'}_{i}}. \end{aligned} \end{aligned}$$
(12)

Step 2, u measures \(C^{'}_{i}\) in the basis \({\{|0\rangle ,|1\rangle \}}\),

when \(a=0\), the result is

$$\begin{aligned} \begin{aligned} |{\varPsi }_{2_{0}}\rangle =&|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}}|0\rangle _{C^{'}_{i}} +|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}}|0\rangle _{C^{'}_{i}}, \end{aligned} \end{aligned}$$
(13)

when \(a=1\), the result is

$$\begin{aligned} \begin{aligned} |{\varPsi }_{2_{1}}\rangle =&|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}}|0\rangle _{C^{'}_{i}} -|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}}|0\rangle _{C^{'}_{i}}. \end{aligned} \end{aligned}$$
(14)

Step 3, if \(a=1\), then u applies \(Z^{\otimes m}\otimes I\) to \(|{\varPsi }_{2_{1}}\rangle \), we get

$$\begin{aligned} \begin{aligned} |{\varPsi }_{3}\rangle \triangleq&\sigma _{Z}^{\otimes m}\otimes I|{\varPsi }_{2_{1}}\rangle \\ =&|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}}|0\rangle _{C^{'}_{i}} +|b_{1}...b_{m}\rangle _{B^{'}_{1},\ldots ,B^{'}_{m}}|0\rangle _{C^{'}_{i}}. \end{aligned} \end{aligned}$$
(15)

\(C^{'}_{i}\) can be disregarded because it is not entangled anymore. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DD., Gao, F., Qin, SJ. et al. Perfect quantum multiple-unicast network coding protocol. Quantum Inf Process 17, 13 (2018). https://doi.org/10.1007/s11128-017-1781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1781-x

Keywords

Navigation