Skip to main content
Log in

Practical performance of real-time shot-noise measurement in continuous-variable quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a practical continuous-variable quantum key distribution (CVQKD) system, real-time shot-noise measurement (RTSNM) is an essential procedure for preventing the eavesdropper exploiting the practical security loopholes. However, the performance of this procedure itself is not analyzed under the real-world condition. Therefore, we indicate the RTSNM practical performance and investigate its effects on the CVQKD system. In particular, due to the finite-size effect, the shot-noise measurement at the receiver’s side may decrease the precision of parameter estimation and consequently result in a tight security bound. To mitigate that, we optimize the block size for RTSNM under the ensemble size limitation to maximize the secure key rate. Moreover, the effect of finite dynamics of amplitude modulator in this scheme is studied and its mitigation method is also proposed. Our work indicates the practical performance of RTSNM and provides the real secret key rate under it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  2. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  3. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421(6920), 238–241 (2003)

    Article  ADS  Google Scholar 

  4. Lodewyck, J., Bloch, M., García-Patrón, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tuallebrouri, R., McLaughlin, S.W., Grangier, P.: Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A 76(4), 042305 (2007)

    Article  ADS  Google Scholar 

  5. Qi, B., Huang, L.L., Qian, L., Lo, H.K.: Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers. Phys. Rev. A 76(5), 052323 (2007)

    Article  ADS  Google Scholar 

  6. García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97(19), 190503 (2006)

    Article  ADS  Google Scholar 

  7. Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97(19), 190502 (2006)

    Article  ADS  Google Scholar 

  8. Renner, R., Cirac, J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102(11), 110504 (2009)

    Article  ADS  Google Scholar 

  9. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062343 (2010)

    Article  ADS  Google Scholar 

  10. Furrer, F., Franz, T., Berta, M., Leverrier, A., Scholz, V.B., Tomamichel, M., Werner, R.F.: Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett. 109(10), 100502 (2012)

    Article  ADS  Google Scholar 

  11. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114(7), 070501 (2015)

    Article  ADS  Google Scholar 

  12. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photon. 7(5), 378–381 (2013)

    Article  ADS  Google Scholar 

  13. Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201 (2016)

    Article  ADS  Google Scholar 

  14. Wang, C., Huang, D., Huang, P., Lin, D., Peng, J., Zeng, G.: 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel. Sci. Rep. 5, 14607 (2015)

    Article  ADS  Google Scholar 

  15. Huang, D., Lin, D., Wang, C., Liu, W., Fang, S., Peng, J., Zeng, G.: Continuous-variable quantum key distribution with 1 Mbps secure key rate. Opt. Express 23(13), 17511–17519 (2015)

    Article  ADS  Google Scholar 

  16. Fossier, S., Diamanti, E., Debuisschert, T., Villing, A., Tualle-Brouri, R., Grangier, P.: Field test of a continuous-variable quantum key distribution prototype. New J. Phys. 11(4), 045023 (2009)

    Article  ADS  Google Scholar 

  17. Jouguet, P., Kunz-Jacques, S., Debuisschert, T., Fossier, S., Diamanti, E., Alléaume, R., Tualle-Brouri, R., Grangier, P., Leverrier, A., Pache, P., Painchault, P.: Field test of classical symmetric encryption with continuous variables quantum key distribution. Opt. Express 20(13), 14030–14041 (2012)

    Article  ADS  Google Scholar 

  18. Huang, D., Huang, P., Li, H., Wang, T., Zhou, Y., Zeng, G.: Field demonstration of a continuous-variable quantum key distribution network. Opt. Lett. 41(15), 3511–3514 (2016)

    Article  ADS  Google Scholar 

  19. Ma, X.C., Sun, S.H., Jiang, M.S., Liang, L.M.: Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems. Phys. Rev. A 88(2), 022339 (2013)

    Article  ADS  Google Scholar 

  20. Jouguet, P., Kunz-Jacques, S., Diamanti, E.: Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution. Phys. Rev. A 87(6), 062313 (2013)

    Article  ADS  Google Scholar 

  21. Huang, J.Z., Weedbrook, C., Yin, Z.Q., Wang, S., Li, H.W., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Phys. Rev. A 87(6), 062329 (2013)

    Article  ADS  Google Scholar 

  22. Huang, J.Z., Kunz-Jacques, S., Jouguet, P., Weedbrook, C., Yin, Z.Q., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking on quantum key distribution using homodyne detection. Phys. Rev. A 89(3), 032304 (2014)

    Article  ADS  Google Scholar 

  23. Qin, H., Kumar, R., Alléaume, R.: Quantum hacking: saturation attack on practical continuous-variable quantum key distribution. Phys. Rev. A 94(1), 012325 (2016)

    Article  ADS  Google Scholar 

  24. Wang, S., Chen, W., Guo, J.F., Yin, Z.Q., Li, H.W., Zhou, Z., Guo, G.C., Han, Z.F.: 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37(6), 1008–1010 (2012)

    Article  ADS  Google Scholar 

  25. Wang, S., Chen, W., Yin, Z.Q., et al.: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22(18), 21739–21756 (2014)

    Article  ADS  Google Scholar 

  26. Wang, S., Yin, Z.Q., Chen, W., et al.: Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat. Photon. 9(12), 832–836 (2015)

    Article  ADS  Google Scholar 

  27. Kunz-Jacques, S., Jouguet, P.: Robust shot-noise measurement for continuous-variable quantum key distribution. Phys. Rev. A 91(2), 022307 (2015)

    Article  ADS  Google Scholar 

  28. Huang, D., Huang, P., Lin, D., Wang, C., Zeng, G.: High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett. 40(16), 3695–3698 (2015)

    Article  ADS  Google Scholar 

  29. Qi, B., Lougovski, P., Pooser, R., Grice, W., Bobrek, M.: Generating the local oscillator “locally” in continuous-variable quantum key distribution based on coherent detection. Phys. Rev. X 5(4), 041009 (2015)

    Google Scholar 

  30. Soh, D.B.S., Brif, C., Coles, P.J., Lütkenhaus, N., Camacho, R.M., Urayama, J., Sarovar, M.: Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X 5(4), 041010 (2015)

    Google Scholar 

  31. Jouguet, P., Kunz-Jacques, S., Diamanti, E., Leverrier, A.: Analysis of imperfections in practical continuous-variable quantum key distribution. Phys. Rev. A 86(3), 032309 (2012)

    Article  ADS  Google Scholar 

  32. Ruppert, L., Usenko, V.C., Filip, R.: Long-distance continuous-variable quantum key distribution with efficient channel estimation. Phys. Rev. A 90(6), 062310 (2014)

    Article  ADS  Google Scholar 

  33. Lin, D., Huang, P., Huang, D., Wang, C., Peng, J., Zeng, G.: High performance frame synchronization for continuous variable quantum key distribution systems. Opt. Express 23(17), 22190–22198 (2015)

    Article  ADS  Google Scholar 

  34. Huang, P., Lin, D.K., Huang, D., Zeng, G.H.: Security of continuous-variable quantum key distribution with imperfect phase compensation Int. J. Theor. Phys. 54(8), 2613–2622 (2015)

    Article  MATH  Google Scholar 

  35. www.thorlabs.com

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 61332019, 61671287, 61631014) and the National Key Research and Development Program (Grant No. 2016YFA0302600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Huang or Guihua Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Huang, P., Zhou, Y. et al. Practical performance of real-time shot-noise measurement in continuous-variable quantum key distribution. Quantum Inf Process 17, 11 (2018). https://doi.org/10.1007/s11128-017-1783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1783-8

Keywords

Navigation