
ar
X

iv
:1

70
9.

01
23

2v
1 

 [
qu

an
t-

ph
] 

 5
 S

ep
 2

01
7

Nonexistence of n-qubit unextendible product bases of size 2
n − 5

Lin Chen1, 2, ∗ and Dragomir Ž D̄oković3, †
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It is known that the n-qubit system has no unextendible product bases (UPBs) of cardinality
2n − 1, 2n − 2 and 2n − 3. On the other hand the n-qubit UPBs of cardinality 2n − 4 exist for all
n ≥ 3. We prove that they do not exist for cardinality 2n − 5.

PACS numbers: 03.65.Ud, 03.67.Mn

I. INTRODUCTION

The notion of UPBs is fundamental in quantum in-
formation theory and has various applications. First,
UPBs have been constructed to characterize the nonlo-
cality without entanglement that appears when locally
distinguishing product vectors [22]. Second, UPBs have
been used to construct positive-partial-transpose (PPT)
entangled states [3]. All two-qutrit UPBs have been con-
structed as well as all two-qutrit PPT entangled states
of rank four [6]. Furthermore, the multiqubit UPBs have
been used to construct Bell inequalities without quan-
tum violation [21]. Recently, it has been shown that
the structure of multiqubit UPBs is related to the so-
called orthogonality complete graphs, and many multi-
qubit UPBs have been thus constructed [11]. However
the main problem, namely to determine the cardinalities
of multiqubit UPBs is still unresolved.

For convenience we denote by Θn the set of cardinali-
ties of UPBs in the n-qubit systems. As we allow a UPB
to span the whole Hilbert space, we have 2n ∈ Θn. It is
known that 2n − 1, 2n − 2 and 2n − 3 do not belong to
Θn for any n, and 2n − 4 ∈ Θn for all n ≥ 3 [12, 13]. In
these references, extensive computer computations failed
to find any example of n-qubit UPBs of cardinality 2n−5.
In the cases n = 3, 4 it is known that they do not exist.
Hence, the question was raised whether such UPBs exist
for some n ≥ 5. In Theorem 9 we prove that they do not
exist. Our proof is based on the study of the hypotheti-
cal entangled PPT projector ρ of rank 5 which a UPB of
size 2n − 5 would provide. As a result we constructed a
couple of examples of 5-qubit bound entangled states of
rank 5, which give the affirmative answer to a question
raised by Johnston in [12, Sec. 6], open problem (1).

The rest of this paper is organized as follows. In Sec.
II we introduce our notation and recall some known facts.
Then we prove two auxilliary lemmas and our main result
in Sec. III. We conclude in Sec. IV.

∗ linchen@buaa.edu.cn (corresponding author)
† djokovic@uwaterloo.ca

II. PRELIMINARIES

Let H = H1 ⊗ · · · ⊗ Hn be the Hilbert space of di-
mension D representing a quantum system A1, . . . , An

consisting of n parties. We are mainly interested in the
case where all parties are qubits, i.e. each Hilbert space
Hj has dimension two. In that case, we fix an orthonor-
mal basis |0〉j , |1〉j of Hj . Usually, the subscript j will be
suppressed.
We say that a vector |v〉 ∈ H is a unit vector if ‖v‖ = 1.

As a rule, we shall not distinguish two unit vectors which
differ only in the phase. When DimHj = 2, by using this
convention, we can say that for any unit vector |vj〉 ∈ Hj

there exists a unique unit vector |v⊥j 〉 ∈ Hj perpendicular
to |vj〉.
A product vector is a nonzero vector |x〉 = |x1〉 ⊗ · · · ⊗

|xn〉, which will be written also as |x〉 = |x1, . . . , xn〉.
If ‖x‖ = 1 we shall assume (as we may) that each
‖xj‖ = 1. Two product vectors |x〉 = |x1, . . . , xn〉 and
|y〉 = |y1, . . . , yn〉 are orthogonal if and only if |xj〉 ⊥ |yj〉
for at least one index j. We use the abbreviation OPS to
denote any set of pairwise orthogonal unit product vec-
tors in H. The cardinality of an OPS cannot exceed D,
the dimension of H. We say that an OPS is an OPB,
orthogonal product basis, if its cardinality is D. As an
example, in the n-qubit system, the 2n product vectors
|xs〉 = |s1, . . . , sn〉, where s := (s1, . . . , sn) runs through
all binary {0, 1}-sequences of length n, is an OPB. We re-
fer to this OPB as the standard OPB. However, there are
many other n-qubit OPBs and describing or classifying
them for any n is a very hard problem, see [3–5, 7–11, 14]
and our paper [7] for the case n = 4.
An unextendible product basis (UPB) is an OPS such

that there is no product vector orthogonal to all vectors
of the OPS [3, 4]. Originally it was required that UPB
does not span the whole Hilbert spaceH, but for the sake
of convenience we have dropped that restriction. We say
that a UPB is proper if it does not span H. We record
some facts from the introduction section in the following
lemma.

Lemma 1 For n ≥ 3, the two largest integers in Θn are
2n and 2n − 4.
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On the other hand, the problem of finding the smallest
element of Θn has been considered by several authors [1,
2, 5] and it was finally resolved by Johnston [11, Theorem
1]. We state his theorem as follows.

Theorem 2 (Jonhston, 2013) The smallest integer in
Θn is:
(i) n+ 1 if n is odd;
(ii) n+ 2 if n ≡ 2 (mod 4);
(iii) n+ 4 if n ≡ 0 (mod 4) and n > 8;
(iv) 6 if n = 4 and 11 if n = 8.

For small values of n, we have Θ1 = {2}, Θ2 = {4},
Θ3 = {4, 8}. Further, from [12, Table 3] we see that

Θ4 = {6, 7, 8, 9, 10, 12, 16}, (1)

Θ5 ⊇ {6, 8, 9, 10, 12− 26, 28, 32}, (2)

Θ6 ⊇ {8, 9, 12, 14− 58, 60, 64}, (3)

Θ7 ⊇ {8, 12, 16, 17, 18, 20− 122, 124, 128}, (4)

where i − j means that all integers k in the range
i ≤ k ≤ j are included. Johnston [12] asks whether
the integers 11, 27 belong to Θ5; 10, 11, 13, 59 to Θ6; and
10, 11, 13, 14, 15, 19, 123 to Θ7.
The main result of this note, Theorem 9, asserts that

2n − 5 /∈ Θn for any n. In particular, we obtain partial
answers to the above questions, namely 27 /∈ Θ5, 59 /∈
Θ6, and 123 /∈ Θ7.
In what follows we recall some known results which we

need for the proof of our main result. Here we allow the
spaces Hi to have any finite dimension ≥ 2.
Let ρ denote an n-partite state ρ := ρ12···n on the space

H1 ⊗H2 ⊗ · · · ⊗Hn. We say that ρ is a PPT state if the
partial transpose of ρ with respect to any subsystem is
positive semidefinite. We use the acronym PPTES to
denote entangled PPT states. If ρ is a separable state,
then L(ρ) denotes its length. For any linear operator ρ
we denote its range by R(ρ) and its nullspace by ker ρ.
We say that a bipartite state ρ is a k × l state if its

reduced states ρ1 and ρ2 have ranks k and l, respectively.
In the bipartite case, ρΓ will denote the partial transpose
of ρ with respect to the first system. We refer to the
ordered pair (rank ρ, rank ρΓ) as the birank of ρ.

Lemma 3 (i) Let ρ be a 2 × N PPT state and |a, b〉 ∈
ker ρ∩ (R(ρ1)⊗R(ρ2)) a unit product vector. Then there
exists λ > 0 such that σ := ρ− λ|a, b〉〈a, b| ≥ 0, rankσ =
rank ρ−1, rankσΓ = rankρΓ−1, rankσ2 = rank ρ2−1 =
N − 1, and the state σ is PPT.
(ii) If ρ is a 2 × 2 or 2 × 3 separable state of birank

(r, s), then L(ρ) = max(r, s). ⊓⊔

Proof. (i) For all assertions, except the PPT
property of σ, see [15, Lemma 7] and its proof. We
shall prove the PPT property. By tracing out the first
party in the equation ρ = σ + λ|a, b〉〈a, b|, we obtain
that ρ2 = σ2 + λ|b〉〈b|. It follows that |b〉 /∈ R(σ2).
Hence, there exists an invertible linear operator W on

H2 which makes P := Wσ2W
† into an orthogonal pro-

jector and such that PW |b〉 = 0. If V := W−1PW then
(I⊗V )ρ = (I⊗V )σ because PW |b〉 = 0, and so we have
(I⊗V )ρ(I⊗V †) = (I⊗V )σ(I⊗V †). Thus to prove that
σ is PPT it suffices to verify that (I ⊗ V )σ(I ⊗ V †) = σ.
This can be done as follows.
Let σ2 =

∑N−1

i=1 |bj〉〈bj | and P =
∑N−1

i=1 |j〉〈j|. Since
P = Wσ2W

† we may assume that W |bj〉 = |j〉. Since
σ2 is a reduced density operator of σ, we have σ =∑

i |αi〉〈αi| where |αi〉 =
∑r

j=1 |aj,i, bj〉 for some vectors

|aj,i〉. Then one can verify that (I ⊗ V )σ(I ⊗ V †) = σ.
(ii) is proved in [9, Proposition 3]. ⊓⊔
In the following lemma, rj denotes the rank of the jth

reduced density operator, ρj , of the state ρ.

Lemma 4 (see [8]). (i) Any n-partite PPT state of rank
at most three is separable.
(ii) If ρ is an n-partite PPTES of rank four then either

n = 2 and r1 = r2 = 3 or n = 3 and r1 = r2 = r3 = 2.
⊓⊔

The following lemma is a special case of Kruskal’s the-
orem (see [19] and [20, Theorem 12.5.3.1, p. 306]).

Lemma 5 Let |a〉 = |a1, a2, a3〉, |b〉 = |b1, b2, b3〉, |c〉 =
|c1, c2, c3〉 and |d〉 = |d1, d2, d3〉 be product vectors of
a tripartite system and let the vectors |ai〉 and |bi〉 be
linearly independent for i = 1, 2, 3. Then the equality
|a〉 + |b〉 = |c〉 + |d〉 implies that, up to phase factors,
{|a〉, |b〉} = {|c〉, |d〉}.

For the convenience of the reader, let us state [7, Re-
mark, p. 7] as a lemma.

Lemma 6 All OPBs of a bipartite system H1 ⊗H2 with
DimH1 = 2 can be constructed by the following method.
First choose an orthogonal decomposition H2 = X1 ⊕
· · · ⊕ Xm with kj := DimXj ≥ 1 and

∑
kj = DimH2.

Next choose m pairwise different o.n. bases {|vj〉, |v
⊥
j 〉},

j ∈ {1, 2, . . . ,m} of H1. Finally, for each j, choose
two arbitrary o.n. bases {|xj,1〉, |xj,2〉, . . . , |xj,kj

〉} and
{|yj,1〉, |yj,2〉, . . . , |yj,kj

〉} of Xj. Then the product vectors

|vj , xj,1〉, . . . , |vj , xj,kj
〉,

|v⊥j , yj,1〉, . . . , |v
⊥
j , yj,kj

〉,

j = 1, . . . ,m,

form an OPB of H.

III. MAIN RESULT

In this section we present our main result on the mul-
tiqubit UPBs in Theorem 9. In addition to the known
results in Sec. II we shall need two more lemmas.

Lemma 7 Suppose there is a UPB U ⊂ H of cardinality
2n − 5 which is orthogonal to five mutually orthogonal
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states |a〉⊗|ϕj〉, j = 1, . . . , 5, with |a〉 ∈ H1 a unit vector.
Then H′ := H2 ⊗ · · · ⊗ Hn has a UPB of cardinality
2n−1 − 5 which is orthogonal to the states |ϕj〉.

Proof. The set V := U∪{|a〉⊗|ϕj〉 : j = 1, . . . , 5} is an
OPB when we viewH as a bipartite systemH = H1⊗H′.
By Lemma 6, V has the form

V = {|ai, ϕij〉 : i = 1, . . . ,m, j = 1, . . . , ki}

∪{|a⊥i , ψij〉 : i = 1, . . . ,m, j = 1, . . . , ki}, (5)

where the {|ai〉, |a
⊥
i 〉} are m different o.n. bases of H1.

We may assume that |a〉 = |a1〉 and |ϕj〉 = |ϕ1j〉,
j = 1, . . . , 5. As 〈ai|aj〉 6= 0 for i 6= j, the set
W := {|ϕij〉 : i = 1, . . . ,m, j = 1, . . . , ki} is an o.n. ba-
sis of H′. It consists of five entangled states |ϕj〉 = |ϕ1j〉
and 2n−1− 5 product states |ϕij〉 for which |ai, ϕij〉 ∈ U .
Since the subspace spanned by the former contains no
product vector, the latter vectors form a UPB in H′ of
cardinality 2n−1 − 5. ⊓⊔

Lemma 8 We shall view the n-qubit Hilbert space H also
as a bipartite space H = H1⊗H′, where H′ := H2⊗· · ·⊗
Hn. Let ρ be a state of rank five on H which is PPTES
as n-partite state and 2×m as a bipartite state. Assume
further that ker ρ has an o.n. basis consisting of n-partite
product vectors. Then ρ is separable as a bipartite state
and has length five, say ρ =

∑5

j=1 |aj , ψj〉〈aj , ψj |. If ρ is

a projector then the |aj, ψj〉 form an o.n. basis of R(ρ).

Proof. Since rank ρ = 5 we must have n ≥ 3.
Let {|bj, φj〉 : j = 1, . . . , 2n − 5} be the o.n. basis
of ker ρ mentioned in the lemma. Since the |bj , φj〉 ∈
ker ρ, we have 〈bj , φj |ρ|bj , φj〉 = 0 which is equivalent to
〈b∗j , φj |ρ

Γ|b∗j , φj〉 = 0. As ρ is PPT, this implies that all

|b∗j , φj〉 ∈ ker ρΓ. We conclude that rank ρΓ ≤ 5.
Let ρ′ = Tr1 ρ, be the state obtained from ρ by trac-

ing out the first qubit, and note that m = rank ρ′. As
rank ρ = 5, we must have 3 ≤ m ≤ 5. If m = 5 then all
assertions follow easily from [15, Corollary 3(a)]. Thus
we may assume that m is 3 or 4.
Since rank ρ = 5, the vectors |φj〉 span a subspace of

dimension at least 2n−1 − 2. As m ≥ 3, for some k
we have |φk〉 /∈ ker ρ′. Thus we have a decomposition
|φk〉 = |α〉 + |β〉 with |α〉 ∈ R(ρ′), |β〉 ∈ ker ρ′. Since
|bk, φk〉 ∈ kerρ and |bk, β〉 ∈ H1 ⊗ ker ρ′ ⊆ ker ρ, we
deduce that |bk, α〉 ∈ (H1 ⊗R(ρ′)) ∩ kerρ. By Lemma 3
(i) there is a λ > 0 such that σ := ρ− λ|bk, α〉〈bk, α| ≥ 0
is a PPT state of birank (4, r − 1) and rankσ′ = m− 1,
where σ′ = Tr1 σ. As m = 3 or m = 4, by the Peres-
Horodecki criterion σ is separable. Hence, ρ is separable
as a bipartite state. Since r ≤ 5, it follows from Lemma
3 (ii) that L(σ) = 4.
The last assertion follows from the fact that rank ρ =

L(ρ) = 5. ⊓⊔
Let us give an example of a state ρ satisfying the con-

ditions of the above lemma. We take n = 4 and

ρ = |0, 0, 0, 0〉〈0, 0, 0, 0|+ |1〉〈1| ⊗ σ,

where σ is a well-known 3-qubits PPTES of rank four
constructed from the 3-qubit UPB of size 4 (see [4]).
On the other hand there exist multiqubit PPTES of

rank five not of this type. An example is the extremal
four-qubit symmetric PPTES with three-rank (5, 7, 8)
constructed in [16] at the end of Sec. III.
Each of the above two PPTESs answers affirmatively

a question raised in [12, Sec. 6], open problem (1).
The range of the first PPTES contains the product state
|0, 0, 0, 0〉. The range of the second PPTES is the 5-
qubit symmetric subspace spanned by symmetric prod-
uct states. So, the kernel of neither of these two PPTESs
is spanned by a multiqubit UPB.
Another interesting example is the so-called X-type

multiqubit PPT state of rank five [17, 18], which may
be yet another example of a multiqubit PPTES of rank
five, but so far we have no proof that this is the case.
Now we are in a position to prove our main result.

Theorem 9 There are no n-qubit UPBs of cardinality
2n − 5, i.e., 2n − 5 /∈ Θn.

Proof. Since Θ3 = {4, 8} and Θ4 =
{6, 7, 8, 9, 10, 12, 16}, the assertion is true for n = 3, 4.
Assume that the assertion fails for some n > 4 and let n
be the smallest such integer. We have to derive a contra-
diction.
By our assumtion, there exists a UPB U ⊂ H of cardi-

nality 2n − 5. We can write it as

U = {|ui, φi〉 : i = 1, 2, . . . , 2n − 5},

where |ui〉 ∈ H1 are unit vectors and the |φi〉 are product
vectors in H′ := H2 ⊗ · · · ⊗ Hn.
Denote by ρ the projector onto the 5-dimensional sub-

space U⊥. By Lemma 8 we have

ρ =

5∑

j=1

|aj〉〈aj | ⊗ |ψj〉〈ψj |, (6)

where the vectors |aj , ψj〉 form an o.n. basis of U⊥ and
the |aj〉 ∈ H1 are unit vectors. If all the |aj〉 are equal,
then Lemma 7 implies that H′ has a UPB of cardinality
2n−1 − 5. This contradicts our choice of n. We conclude
that the vectors |aj〉 span H1. We shall now distinguish
three cases.
Case 1. {|aj〉} contains two o.n. bases of H1.
Without any loss of generality we may assume that

|a2〉 = |a⊥1 〉, |a4〉 = |a⊥3 〉 and either |a5〉 6= |aj〉 for j < 5
or |a5〉 = |a4〉. Since the |aj , ψj〉 are pairwise orthogonal,
we have |ψ3〉 ⊥ |ψ1〉, |ψ2〉. By using Lemma 6, one can
verify that {|ψ1〉, |ψ3〉}

⊥ has an o.n. basis consisting of
product vectors. Consequently, α := |ψ1〉〈ψ1|+|ψ3〉〈ψ3| is
an (n− 1)-partite PPT state of rank two. By [8, Lemma
11] it is separable of length two. The same is true for
β := |ψ2〉〈ψ2|+ |ψ3〉〈ψ3|, and so we have

α = |b2, . . . , bn〉〈b2, . . . , bn|+ |c2, . . . , cn〉〈c2, . . . , cn|,

β = |d2, . . . , dn〉〈d2, . . . , dn|+ |e2, . . . , en〉〈e2, . . . , en|,(7)
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where |b2, . . . , bn〉 ⊥ |c2, . . . , cn〉 and |d2, . . . , dn〉 ⊥
|e2, . . . , en〉 are unit vectors. Hence

|ψ1〉, |ψ3〉 ∈ span{|b2, . . . , bn〉, |c2, . . . , cn〉},

|ψ2〉, |ψ3〉 ∈ span{|d2, . . . , dn〉, |e2, . . . , en〉}. (8)

By permuting the last n − 1 qubits, we may assume
that for some m ≥ 2 we have |bj〉 6= |cj〉 for 2 ≤ j ≤ m
and |bj〉 = |cj〉 for j > m. As no |ψj〉 is a product vector,
it follows from (8) that m > 2.
Suppose that m > 3. Then Lemma 5

implies that the sets {|b2, . . . , bn〉, |c2, . . . , cn〉} and
{|d2, . . . , dn〉, |e2, . . . , en〉} are the same (up to phase
factors). It follows that the vectors |ψ1〉, |ψ2〉, |ψ3〉
belong to the same 2-dimensional subspace, and since
|ψ3〉 ⊥ |ψ1〉, |ψ2〉 we deduce that |ψ1〉 = |ψ2〉. Since
|a1, ψ1〉 and |a2, ψ2〉 = |a⊥1 , ψ1〉 belong to R(ρ), so does
|a3, ψ1〉. Since also |a3, ψ3〉 ∈ R(ρ), we deduce that
|a3, b2, . . . , bn〉 ∈ R(ρ). This contradicts the assumption
that U is a UPB.
Hence, we must have m = 3 and so

|b4, . . . , bn〉 = |c4, . . . , cn〉 = |d4, . . . , dn〉 = |e4, . . . , en〉.
(9)

As mentioned earlier, we have to consider two possibili-
ties for |ψ5〉.
The first one is that |a5〉 6= |aj〉 for j < 5. By

using Lemma 6, one can verify that the subspace
{|ψ1〉, |ψ3〉, |ψ5〉}

⊥ of H′ has an o.n. basis consisting of
product vectors. As the vectors |aj , ψj〉 are mutually
orthogonal, we have |ψ5〉 ⊥ |ψ1〉, |ψ3〉. Hence, by adjoin-
ing the product vectors |b2, . . . , bn〉 and |c2, . . . , cn〉} to
the above mentioned o.n. basis, we obtain an o.n. basis
for the hyperplane of H′ orthogonal to |ψ5〉. As |ψ5〉 is
not a product vector and H′ has no UPBs of cardinality
2n−1 − 1, we have a contradiction.
The second possibility is that |a5〉 = |a4〉. As the vec-

tors |aj , ψj〉 are mutually orthogonal, the same is true
for the vectors |ψ1〉, |ψ4〉 and |ψ5〉. By using Lemma 6,
one can verify that the subspace {|ψ1〉, |ψ4〉, |ψ5〉}

⊥ of H′

has an o.n. basis consisting of product vectors. Since
2n−1 − k /∈ Θn−1 for k ∈ {1, 2, 3}, the subspace spanned
by |ψ1〉, |ψ4〉 and |ψ5〉 has an o.n. basis consisting of
product vectors, say |p〉 = |p2, . . . , pn〉, |q〉 = |q2, . . . , qn〉
and |r〉 = |r2, . . . , rn〉. It follows that there exists an
order-3 unitary matrix [uij ] such that

|ψ1〉 = u11|p〉+ u12|q〉+ u13|r〉,

|ψ4〉 = u21|p〉+ u22|q〉+ u23|r〉,

|ψ5〉 = u31|p〉+ u32|q〉+ u33|r〉. (10)

By the argument we used above to prove that the |aj〉
are not all equal, we can show that there is no j > 3 such
that |pj〉 = |qj〉 = |rj〉 = |bj〉.
If u11 = 0 then we have u22u33 − u23u32 = 0 and

by taking a suitable linear combination of |a4, ψ4〉 and
|a4, ψ5〉 we obtain that the product vector |a4, p〉 ∈ R(ρ),
i.e. we have a contradiction. Thus u11 6= 0, and similarly

u12 6= 0 and u13 6= 0. From the equations (8) and (9) we
obtain that

|ψ1〉 = (ξ|b2, b3〉+ η|c2, c3〉)⊗ |b4, . . . , bn〉

= u11|p2, . . . , pn〉+ u12|q2, . . . , qn〉+ u13|r2, . . . , rn〉,

(11)

where ξη 6= 0 and |bj〉 6= |cj〉 for j = 2, 3. Since we
have shown that for j > 3 at least one of the three unit
vectors |pj〉, |qj〉, |rj〉 is not equal to |bj〉, the equation
(11) implies that at most one of the same three vectors
can be equal to |bj〉.
We claim that |pj〉 6= |bj〉 for j > 3. We shall prove

it by contradiction. Assume that, say, |pn〉 = |bn〉.
Then the equation (11) implies that |q2, . . . , qn−1〉 =
|r2, . . . , rn−1〉 and so

|ψ1〉 = u11|p2, . . . , pn〉+ |q2, . . . , qn−1〉 ⊗ (u12|qn〉+ u13|rn〉).

(12)

From (11) we see that 〈b4, . . . , bn|ψ1〉 = ξ|b2, b3〉+η|c2, c3〉
has Schmidt rank 2. From (12) we deduce that also
|p2, p3〉+ |q2, q3〉 has Schmidt rank 2. As 〈b⊥n−1|ψ1〉 = 0,
from the same equation we obtain that

u11〈b
⊥
n−1|pn−1〉|p2, . . . , pn−2, pn〉+

〈b⊥n−1|qn−1〉|q2, . . . , qn−2〉 ⊗ (u12|qn〉+ u13|rn〉) = 0.

This equation implies that 〈b⊥n−1|pn−1〉 = 〈b⊥n−1|qn−1〉 =
0 which gives the contradiction: |pn−1〉 = |qn−1〉 =
|bn−1〉. Thus our claim is proved.
Let |θ〉 = |ψ1〉−u11|p〉. By switching the tensor factors

H3 and H4, |θ〉 is mapped to

ξ|b2, b4〉 ⊗ |b3, b5, . . . , bn〉+ η|c2, b4〉 ⊗ |c3, b5, . . . , bn〉

−u11|p2, p4〉 ⊗ |p3, p5, . . . , pn〉.

The three first tensor factors, namely |b2, b4〉, |c2, b4〉 and
|p2, p4〉, are linearly independent and the same holds true
for the second tensor factors. It follows that |θ〉 con-
sidered as bipartite tensor has tensor rank 3. Now the
equation (11) gives a contradiction.
Case 2. {|aj〉} contains only one o.n. basis of H1.
Say, |a2〉 = |a⊥1 〉. We have ρ = |a1〉〈a1|⊗α+ |a⊥1 〉〈a

⊥
1 |⊗

β + γ, where α is a sum of p terms |ψi〉〈ψi|, β is a sum
of q terms |ψj〉〈ψj |, and γ is a sum of 5 − p − q terms
|al, ψl〉〈al, ψl|. We may also assume that p ≤ q. By using
Lemma 6, one can verify that the orthogonal complement
in H′ of the set of the |ψi〉 which appear in α has an o.n.
basis consisting of product vectors. Hence, |α〉 is a PPT
state of rank p ≤ 2. By Lemma 4 α is separable. It
follows that R(ρ) contains a product vector and we have
a contradiction.
Case 3. {|aj〉} contains no o.n. basis of H1.
We may assume that |ai〉 = |a1〉 for i ≤ p and |aj〉 6=

|a1〉 for j > p. Let V ⊆ H′ be the subspace spanned
by the |ψi〉 for i ≤ p. By the same argument as in case
2, the subspace V ⊥ ⊆ H′ has an o.n. basis consisting
of product vectors. Note that p /∈ Θn−1. This is clear
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when p < 5 and it is true for p = 5 by our choice of
n. Consequently V contains a product vector, say |φ〉.
Then |a1, φ〉 is a product vector in R(ρ) and we have a
contradiction.
This completes the proof. ⊓⊔
Let ρ be an n-qubit PPTES of rank five. Since any

3-qubit subspace of dimension five contains a product
vector, we must have n > 3. Theorem 9 shows that kerρ
is not spanned by a UPB. However R(ρ) may contain a
product vector. Indeed we have shown that this is the
case for the PPTESs mentioned below Lemma 8. If such
ρ exists for n = 4 then ρ ⊗ |a〉〈a|, with |a〉 a product
vector, would be also a multiqubit PPTES of rank five
whose range contains no product vectors. Intuitively we
believe that

Conjecture 10 The range of any multiqubit PPTES of
rank five contains a nonzero product vector.

Note that this conjecture is stronger than Theorem 9.

IV. CONCLUSIONS

The problem of constructing UPBs in multipartite
quantum systems, which is more than 15 years old, is
still of interest due to its role in various applications such
as those mentioned in the Introduction. Some important
advances in the case of multiqubit systems have been

made recently regarding the cardinalities of UPBs in such
systems. For instance the minimal size of the n-qubit
UPB is known for all n. Recall that Θn denotes the set
of sizes of the UPBs of the n-qubit system. In this paper
we have proved, see Theorem 9, that 2n−5 /∈ Θn for any
n. In particular, 27 /∈ Θ5, 59 /∈ Θ6, and 123 /∈ Θ7. This
gives a partial answer to a question raised in [12]. We
propose a conjecture about multiqubit entangled PPT
states of rank 5, Conjecture 10.

Let us also point out that the improper UPBs (known
as OPBs) of n-qubit systems, i.e. those of cardinality 2n,
can be studied by using special combinatorial matrices of
size 2n × n as in our paper [7]. With some minor modi-
fications, the same combinatorial technique is applicable
to the study of proper UPBs.
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